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characterization of structured materials are: evapora-
tion, sedimentation, thixotropy, shear banding, and
apparent wall slip.
         As reviewed by Barnes [9] in detail, apparent wall
slip or wall depletion effects can occur in flows of struc-
tured materials and is mainly observed when low shear
rates, large components in the disperse phase, smooth
walls, and small dimensions are present. Apparent wall
slip is caused by the creation of a thin layer of the con-
tinuous phase alone at the solid boundaries, where the
strain rates are maximum. This lower-viscosity deplet-
ed layer plays a lubricating role, facilitating the flow.
Due to this fact, one can obtain distinct viscosity values
with different rheometric geometries, as shown in
Barnes [9], where lower viscosities are obtained for
smaller-gap geometries. In addition, unreal Newtonian
plateaus at stresses below the yield stress and kinks in
the flow curve may be obtained [9 – 11].
         To circumvent apparent slip problems in the rheo-
logical characterization of structured materials, two
strategies are usually employed: (i) the use of different
gaps to obtain enough data to perform mathematical
manipulations to end up with the bulk flow properties
[12, 13], or (ii) modifications of the wall surface to elimi-

1      INTRODUCTION

Structured materials are generally formed by discrete
components dispersed in a homogeneous and contin-
uous phase [2]. Usually, these materials present a
threshold stress, known as yield stress, below which
they feature a solid-like behavior, with no noticeable
de formation. Above the yield stress there is a steep vis-
cosity decay followed by a pseudoplastic or Newtonian
behavior, and the material is able to flow like a liquid.
For some of these materials there is measurable, albeit
very slow, irreversible flow below the threshold stress
[3, 4], in this case called the apparent yield stress.
Recently, Boisly et al. [5] introduced a new terminology,
defining solids, liquids and yield stress fluids as distinct
materials. Such materials can be found in our daily life,
as well as in several industrial applications. Therefore,
it is important to obtain their rheological properties and
to predict their mechanical behavior. Recently, the
rheometry of such materials has received a lot of atten-
tion in the literature [6 – 8], especially with regard to
the development of techniques, designed to mitigate
possible sources of error in rheological measurements.
Some of the main challenges reported in the rheological
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formed using sandpaper at the walls [34], a slender
gauze basket inserted inside the outer cylinder [35], or
a serrated or profiled cylindrical cup [20] to prevent
apparent wall slip at the outer wall.
         For all the reasons mentioned above, it becomes
clear that, in rheological measurements of yield-stress
materials, more attention should be given to the appar-
ent wall slip at the outer cylinder wall, where the shear
stresses are lower. In addition, it can be noted that the
grooved Couette geometry was successful in eliminat-
ing apparent wall slip during the rheological measure-
ments carried out in this work, while the vane-in-cup
did not present a good performance. Thus, care needs
to be taken before selecting the vane geometry as a
good option to prevent apparent wall slip in rheological
measurements.

6     FINAL REMARKS

In this paper, a numerical and experimental investiga-
tion was performed to analyze the flow pattern and
apparent wall slip in rheological measurements of
yield-stress materials in rotational rheometers. Three
different geometries were used in the study: the
smooth Couette, the vane-in-cup and the grooved Cou-
ette. Rheometrical data of Carbopol dispersions were
presented, and an analysis was performed regarding
the conditions needed to obtain valuable data for the
flow curve of yield stress materials. If on one hand
rather long times are needed in the low shear rate range
to reach the steady state from rest, on the other hand
these times can be considerably shortened if the sam-
ple is pre-sheared. This behavior is in accordance to that
presented in Ovarlez et al. [6]. 
         Numerical simulations were performed using the
finite volume technique. The results were compared to

the experiments, showing that for Carbopol disper-
sions, apparent wall slip occurs at lower shear stresses.
At this range, the outer wall slip velocity in the smooth
Couette is much higher than the inner one for the Car-
bopol dispersions studied, in contrast to Buscall et al.
[21], who found no slip at the outer cylinder wall for
weakly attracted particle dispersions. For higher shear
stresses, no slip was detected, and all geometries per-
formed reasonably well in rheological measurements.
It is also shown that flow kinematics is affected special-
ly in the vane-in-cup geometry, which could lead to
experimental errors in viscosity measurements. Finally,
it is important to point out that the performance of the
grooved geometry was much better than the other
ones in the rheological measurements carried out and
that precautions must be taken when using the vane
geometry.
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Figure 14: Dimensionless inner and outer shear stress for the
three geometries.

Figure 15: Experimental and numerical results of dimension-
less inner wall shear stress.
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