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there are many cases when jump-like spatial-temporal
changes of rheological properties of a sample can be
met. In these specific cases, it should be understood
what is really measured when spatial-temporal phe-
nomena in the flows of multi-component (multiphase)
materials occur and one expect (possible false) that
their rheological properties are measured. This publica-
tion addresses this issue and its goal is to discuss and
classify different real situations when this question
arises. The earlier review devoted to self-organization
in the flow of complex fluids was published in [5]. This
review touches several important aspects of the prob-
lem not discussed below and covers new literature
sources appeared during last 5 years. In particularly, the
movement of supermolecular structures as single
objects in heterogeneous media is discussed It also
seems necessary to discuss the problem of spatial-tem-
poral heterogeneity in the flow of multi-component
(complex) fluids with respect to using rheological con-
stitutive equation for such cases. It is emphasized that

1      INTRODUCTION

There are a lot of publications – original papers, re -
views, monographs, textbooks, manuals, software and
so on – devoted to fundamental principles, corrections,
and applied methods for measuring the rheological
properties of fluids [1 – 4]. Generally speaking, they are
based on the conservation equations and, surely, the
results of calculations are correct within the limits of
the assumptions used. The main assumption is the con-
cept that we are dealing with homogeneous media
with properties which are constant or continuously
changing in space. These general approaches are ap -
plied to very different materials including multi-com-
ponent and multiphase fluids assuming however that
it is possible to average the properties of such systems
at some volume which is negligibly small in comparison
with the total volume of a measuring cell.
         Meanwhile, the latter can be untrue: volumes of
parts of a matter under study can be rather large and
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