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terpolymers (RETs). RETs also contain ester groups, such
as methyl, ethyl or butyl acrylate or glycidylmethacry-
late. The disadvantages of RET modifiers are their higher
cost and risk of gelation [10, 11]. Considering these disad-
vantages, acids can also be introduced to ameliorate the
engineering properties of asphalt. Because of the subtle
conditions of obtaining a stable and fluidlike system of
asphalt and RET it is worthwhile to test the proposed
compliance model on such a system. Lately the asphalt
industry was very interested in lowering the cost of
asphalt modified binders by decreasing the amount of
polymer modifier by substituting the polyphosphoric
acid for the part of polymer. In such “three-component
systems” the limiting amounts of modifiers may or may
not lead to the structural changes that under tempera-
tures close to the glass temperatures of asphalt may
need the phenomenological description with various
time scales.
         Modification with acids consistently alters the
physical properties of asphalt, and the effects are com-
parable to air blowing [10]. Polyphosphoric acid (PPA) is
by far the most important acid introduced in asphalt
technology [12]. The impact on the thermal and rheo-
logical properties of asphalts have been described by

1      INTRODUCTION

Asphalt (bitumen) was one of the earliest construction
materials. Today, it is used mainly for the construction
of roads and highways, although The Shell Bitumen
Handbook [1] gives at least 250 ways for its use in vari-
ous fields of human endeavor. Asphalt is a complicated
system both chemically and rheologically. An interest-
ed reader should check two reviews on asphalt: the first
one is the “Review of the uses and modeling of bitumen
from ancient to modern times” [2], and the second more
recent review is paper by Lesueur [3].
         Conventional paving asphalt is prone to rutting at
higher temperatures, fatigue, and low-temperature
cracking [2]. In order to improve its engineering proper-
ties, asphalt is frequently modified by various polymers.
The most successful polymer modifiers are thermoplas-
tic elastomers, especially the styrene-butadiene-styrene
(SBS) copolymer [4 – 8]. The most common plastomer
asphalt modifiers are polyethylene and polypropylene.
Generally, plastomers are incompatible with asphalt and
separation of phases can occur [9]; thus, one can consider
functionalized polyolefins as asphalt modifiers. These
polymers are ethylene based and called reactive ethylene
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be noted that PMAs A2 and A3 showed similar elastic
properties when not aged and even after RTFOT aging.
A very small improvement in PMA A3 could be observed,
which was slightly augmented in the same PAV aged
samples.

5      CONCLUSIONS

The tensile compliance function of several asphalt
binders was studied at low temperatures with discrete
retardation spectra and stretched time continuous
retardation spectra. The deformation mode was creep
and recovery (complemented by the derived shear com-
pliance from the dynamic material functions) in linear
viscoelastic domain. The tensile compliance function
D(t) was obtained in a BBR from the indirect tensile
creep and recovery experiments at several low temper-
atures. The retardation spectra from both modes of
deformation were compared; and, it was found that all
the sets (complete and partial, shear and tensile) could
be superposed well on the interval of all retardation
times. When the shear and tensile compliance func-
tions were compared, a small difference in their values
was observed. This can point to the existence of bulk
compliance, i.e. Poisson’s ratio different from values
close to 0.5 [7]. Both the classic linear viscoelastic model
and the model based on the stretched time retardation
spectrum for the tensile compliance function worked
well for all the tested binders (aged and not aged) at
low temperatures) however, the stretched time, gam-
ma distribution model contained less than half of the
number of adjustable parameters than the classic lin-
ear viscoelastic model. From the observations obtained
in this study one should not disqualify binders modified
by RET and PPA from the performance competition at
higher temperatures. It was shown that these materials
are stiff enough at low temperatures (see Figures 1 and
2) and may show less deformation after longer aging.
Such hypothesis will be discussed elsewhere. For an
enthusiastic reader we would like to mention the
recently released publication which discusses the
guidelines for the use of PPA for the hot mix paving
applications [37].
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