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this case and due to the highly internal structure of the
first casted layer, the stresses generated by the second
layer may be not sufficient to re-initiate the flow in the
first layer, thus preventing good bonding between the
two layers [9].
         Various studies have been conducted to investi-
gate build-up of cement-based materials [13 – 17]. This
phenomenon originates from the colloidal jamming
due to particles flocculation and the chemical bridging
resulting from cement hydration. Different techniques
can be used to quantify build-up of cement-based
materials [18 – 21]. Most of these techniques are based
on assessing the structuration at rest after breaking
down the internal network structure. The accuracy of
measured build-up characteristics rely on the pre-shear
regime and the shear stress applied during liquid-solid
transition (i.e. flow stoppage) [22 – 25]. The applied pre-
shear regime should be chosen to reproduce the appli-
cation on hand. For example, rotational shear is proba-
bly the most suitable to reproduce the pumping, while
in the case of vibration the oscillatory shear is the most
suitable. However, for fundamental studies and in

1      INTRODUCTION

Cement-based suspensions are thixotropic materials
[1 – 3]. Thixotropy, or the structural build-up at rest,
refers to the change from liquid to solid-like states
when cement suspension is left at rest (i.e. increase in
static yield stress at rest) [4]. Flow performance, place-
ment, and consolidation of cement-based materials are
affected by their thixotropic properties [5 – 7]. For
example, build-up of concrete has a great impact on its
behavior in various applications, including multi-layer
casting, cast in place concrete, and slip-form paving
construction [6, 8, 9]. Furthermore, build-up kinetics
affects the maximum lateral pressure exerted on form-
work and its decay with time until cancellation [8,
10 – 12]. Lower build-up kinetics results in higher lateral
pressure, hence increasing formwork costs and limiting
the maximum allowable placement height [11]. On the
other hand, using a highly thixotropic concrete in mul-
ti-layer casting will result in reducing the bond strength
between the casted layers, hence resulting in poor
mechanical performance for the structure. Indeed, in
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n    For shear strains between 1 and 10 %, the application
of a rotational shear of 150 or 225 s-1 before imposing
the oscillatory shear resulted in comparable norma -
lized storage modulus and damping factor. This in -
dicates that applying disruptive oscillatory shear at
strains around the crossover strain after rotational
shear rate lower than the transition shear rate can
compensate for the lower dispersion efficiency
obtained at this shear rate.

n    The application of LAOS before a rotational shear of
225 s-1 resulted in improving the normalized damp-
ing factor with no significant changes in the nor-
malized storage modulus. Applying a rotational
shear of 150  instead of 225 s-1 resulted in normalized
structural parameters near unity. The application of
rotational shear after LAOS can allow nucleation of
CSH between dispersed cement particles, thus
resulting in network strength similar to that ob -
tained after rotational shear alone. The increase in
network strength during the rotational shear may
be related to the competition between breaking
down due to shearing and build-up due to cement
hydration [26]. These results suggest that applying
LAOS before rotational shear does not result in sig-
nificant improvement in the dispersion efficiency
compared with the case of rotational shear fol-
lowed by oscillatory one.

According to these observations, it is recommended to
follow the traditional rotational disruptive technique
with LAOS to ensure well dispersed systems before mea-
suring the build-up. This combination showed higher
efficiency to disperse concentrated suspension com-
pared to rotational shear rate only. Moreover, this com-
bination achieved a comparable reference state for var-
ious shear strains compared with LAOS which achieved
different states depending on the strain value.

4     CONCLUSIONS

The effect of various disruptive shearing techniques
including rotational, oscillatory, and rotational-oscilla-
tory combinations on dispersion efficiency of 0.35 w/c
suspensions (i.e. concentrated cement suspension) is
investigated. Small amplitude oscillatory shear mea-
surement technique was used to quantify the structure
before (initial) and after (growth) applying the different
disruptive shearing regimes. Based on the obtained
results, the following conclusions can be pointed out:
n    Large amplitude oscillatory shear at high frequency

can be applied to disperse concentrated cement
suspensions. This should be done at shear strain
near the crossover value corresponding to the max-
imum damping factor (i.e. maximum liquid state).

n    The oscillatory technique is more efficient than the
rotational one to disperse concentrated cement
suspensions. Oscillatory disruptive shear is shown
to reduce viscosity by 70 times compared 5 times
obtained with rotational shear.

n    The dispersion efficiency of rotational shear per-
formed at shear rates lower than the transitional
value can be enhanced by applying a post-oscillato-
ry shear at strain around the crossover value corre-
sponding to the maximum damping factor.

n    The application of rotational shear followed by an
oscillatory shear is found to achieve a comparable
dispersion degree for shear strain and shear rate
values different than the optimum ones (i.e. cross
over shear strain and transitional shear rate).

n    The application of disruptive oscillatory shear be -
fore the rotational shear was not effective in en -
hancing the dispersion degree of concentrated
cement suspension.

n    An effective dispersion method for concentrated
cement suspension is proposed. This consists in
applying a rotational shear around the transitional
value between shear-thinning and shear thickening
followed by an oscillatory shear at the crossover
shear strain and high angular frequency of 100 rad/s.
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