
became important for researchers and the industry to
develop fluids that not only are sufficiently viscous to ini-
tiate and propagate fractures but also are non-damaging
to the formation. This led to the development of poly-
mer-free viscoelastic surfactant (VES) fluids.
         Viscoelastic surfactants contain molecules that
are smaller (5,000 times smaller) than guar molecules
[2]. Moreover, they satisfy other criteria for their wide-
spread use. These criteria are low pressure drop in pipes,
ability to transport and place proppants, and flow back
with little or no formation damage [2]. The role of sur-
factants has been expanded to operations in low and
high temperature reservoirs as well as to unconven-
tional plays such as coalbed methane reservoirs [3]. For
coalbed methane applications, VESs have proved effec-
tive at minimizing formation damage, which ultimate-
ly results in greater production. Shear degradation with
surfactants is temporary when compared to perma-
nent degradation with polymers. They are non-damag-
ing to hydrocarbon formations because they leave no
residue in pore spaces. A drawback of surfactants is loss
of functionality at elevated temperatures.
         Many industrial applications, especially in the chem -
 ical and petroleum industries, involve solids transport by

1      INTRODUCTION

The application of surfactants in the petroleum industry
is varied and diverse. Surfactants are used in a myriad of
roles within the oil and gas industry. In drilling opera-
tions, surfactants can act as thinners, lubricants, and
emulsifiers. Examples of some surfactants are lignosul-
fonates and sulfonated asphalt, which function as thin-
ners and emulsifiers, respectively [1]. For cementing
operations, surfactants are used as spacer fluids that
condition the wellbore in preparation for pumping
cement. They act as viscosifiers when added to comple-
tion brines. For enhanced oil recovery operations, surfac-
tants are used for interfacial tension reduction. Other
applications include the following: matrix diversion, fil-
ter cake removal, and wellbore cleanouts [2]. More
recently, surfactants have been developed for hydraulic
fracturing operations. Exploration and exploitation of
less permeable reservoirs encouraged research into for-
mulations of viscous fluids for stimulation. Polymer flu-
ids, introduced in the 1960s, were observed to cause for-
mation damage and thereby hinder production [3]. This
is because the relatively large size of polymer molecules
has a greater tendency to plug pore throats. Thus, it
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ciple is used. The time-temperature superposition (TTS)
is primarily used to examine the equivalency between
frequency and temperature. This principle simply as -
sumes equal temperature dependence on relaxation
mechanisms [37] and assesses the similarity of responses
at several temperatures [17]. Three approaches were test-
ed for reducing the 4 % solution to a single master curve
for G’(ω). The first approach uses the method of reduced
variables with the horizontal shift factor from Equa-
tion 11a. The second approach involves scaling the angu-
lar frequency with the relaxation time, which has been
successfully applied to surfactant solutions [37]. The
third approach (Figure 10) scales the moduli axis with the
pla teau modulus and the frequency axis with the relax-
ation time [39]. The results of the TTS show an inability
to reduce the data to a single curve irrespective of the
scaling technique. As a result, it may be stated that there
are possible structural changes within the sample that
are not solely due to temperature. Fluids displaying this
sort of behavior are called “thermorheologically” com-
plex fluids.
         With these findings, it obvious that structural
changes in WLMs occur with increasing temperature.
The largest value of τR at 311 K suggests the presence of
long micelles as stress relaxation is reduced. At higher
temperatures (> 311 K), the presence of shorter micelle
length is unlikely because the mesh and entanglement
network density increases with temperature. This is
confirmed by an increase in Go with temperature. An
explanation for this observation can be attributed to
branching or formation of joints in micellar network.
These joints slide along the micelle length, resulting in
faster stress relaxation [24].

6     CONCLUSIONS

The rheological behavior of Aromox® APA-T and APA-T
solutions at different concentrations was investigated
using steady shear and dynamic oscillatory testing. The
influence of concentration and temperature on rheolog-
ical properties was reported. The zero-shear rate viscos-
ity increased with concentration, as expected. An in -

crease in concentration promotes formation and growth
of rod-like micelles. Temperature had a significant effect
on the rheological character of test solutions. The zero-
shear rate viscosity increased with temperatures bet -
ween 297 K and 311 K. Correspondingly, the relaxation
time increased with temperature within the same range.
This observation can be attributed to the growth and
entangling of worm-like micelles. At higher tempera-
tures, the zero-shear rate viscosity and relaxation time
decreased with temperature. The plateau modulus
increased with temperature.
         Scaling relationships with concentration were com -
pared to theoretical values. For APA-T solutions, the high-
er exponents for zero-shear rate and relaxation time
with concentration indicated the presence of long
micelles. These longer micelles were responsible for
higher zero-shear rate viscosity and greater viscoelastic
response. APA-TW solutions, on the other hand, con-
tained branched micelles because scaling exponents
were lower than theoretical values. Further studies
involving the use of visualization techniques is recom-
mended to complement and confirm rheological obser-
vations.
         Master curves were generated for 4 % APA-T and 5 %
APA-TW steady shear data at different temperatures.
However, all attempts to generate master curves for vis-
coelastic data failed due to the thermorheologically com-
plex nature of these fluids. Molecular scaling using the
characteristic time for data at different concentrations
proved unsuccessful because the non-Newtonian char-
acter of surfactant solutions prevented the collapse of
data to a single curve.
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