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Previous works on the rheology of pure silicone oils
study samples with zero-shear viscosities in the 10 – 50
Pas range or below [2, 13]. Only a few papers consider
silicone oils with much higher viscosities [14, 15]. A
detailed investigation of shear thinning [16] and a thor-
ough analysis of the relaxation times [17] in high vis-
cosity PDMS give valuable information about their rhe-
ological properties within the measurement range of
conventional rotational rheometers. There are only few
methods available to study rheological behavior be -
yond 100 Hz. For a recent review on high frequency
mechanical and optical rheometry techniques [18].
Regarding high viscosity PDMS, an ultrasound-based
technique was successfully applied to samples of 100
and 500 Pas zero shear viscosity, and a second crossover
of the loss and storage moduli was found between
106 – 107 Hz [19]. One of the few high frequency rheom-
etry techniques is Diffusing Wave Spectrosopy (DWS)
[20, 21]. For transparent materials such as PDMS, DWS

1 INTRODUCTION

Silicone oils (polydimethylsiloxane, PDMS) have multi-
ple application areas ranging from fundamental re -
search and applied sciences to many branches of mod-
ern industry [1, 2]. In particular, PDMS is frequently used
in polymer science and materials science for its inter-
esting rheological properties, e.g. as matrix fluid in sus-
pensions [3 – 6] and colloidal dispersions [7], or as a
component of polymer blends [8, 9]. PDMS is also a pop-
ular test material for new rheological theories [10], and
for novel measuring methods and devices [11]. Some
rheometer manufacturers use PDMS also as calibration
liquids [12]. To optimize the use of silicone oils for fun-
damental research or industrial applications, it is cru-
cial to have a good description of their rheological prop-
erties over a large frequency range. However, for high
viscosity silicone oils, reliable data at high frequencies
is often lacking.
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Abstract:
Measurements and modeling of rheological properties of a high viscosity silicone oil (polydimethylsiloxane, PDMS) at high
frequency are reported. The linear viscoelastic properties are measured by small amplitude oscillation shear (SAOS) tests with
a rotational rheometer. Furthermore, Diffusing Wave Spectroscopy (DWS) is used, which expands the angular frequency range
of the measured loss and storage moduli up to 105 rad/s, in a temperature range of 20 - 70°C. Good agreement between both
methods is found in the overlapping frequency region, especially at higher temperatures. The DWS data show that the elas-
tic modulus stays dominant and increases with frequency, without a second cross-over point up till 108 rad/s. Flow curves,
measured with rotational and with capillary rheometry up to a shear rate of 7.6 · 104 s-1, show shear thinning behavior, which
implies nonlinear viscoelasticity. Comparison of the dynamic and complex viscosity shows that the Cox-Merz rule is valid in a
frequency range spanning six orders of magnitude. A multi-element White-Metzner model is proposed as a constitutive equa-
tion, which accurately describes the nonlinear viscoelastic properties, including the decrease of the loss and storage moduli
during amplitude sweeps in oscillatory shear measurements.
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stress, ti is the shear stress of the i-th element. This 6-
element White-Metzner model is able to accurately
describe the measured nonlinear viscoelastic proper-
ties of the silicone oil in the full frequency and shear
rate range. In the low shear rate limit, the model equa-
tions go over into the linear Maxwell model, and give
SAOS loss and storage moduli corresponding to Fig-
ure 7. The dependence of the shear flow viscosity on the
shear rate was also simulated. As shown by the dashed
black line in Figure 8, the model accurately accounts for
the shear thinning, i.e. also for the Cox-Merz rule, in the
entire measured range.

We performed a further independent test of our 6-
element nonlinear White-Metzner model using ampli-
tude sweeps in oscillatory shear measurements with the
rotational rheometer. Both the loss and the storage mod-
uli decreased with increasing shear amplitude, while the
onset of this nonlinear effect shifted to lower amplitudes
with increasing oscillation frequency. The calculated and
measured moduli versus the shear amplitude are shown
in Figure 9.a at lower and in Figure 9.b at higher frequen -
cies. We find excellent agreement between the com-
puter simulated storage and loss moduli and the exper-
imental data.

7 CONCLUSIONS

We investigated the rheological properties of a high vis-
cosity silicone oil with a zero-shear viscosity of approxi-
mately 1000 Pas at 25 °C. Diffusing Wave Spectroscopy
can consistently extend the frequency range of loss and
storage moduli of SAOS measurements obtained with a
rotational rheometer, without any fitting, up to 105rad/s.
The high frequency behavior exhibits strong elastic dom-
inance with a smooth frequency dependence in the in -
vestigated temperature range. Shear flow tests by the
rotational rheometer were extended by capillary rheom-
etry up to a shear rate of 7.6 · 104 s-1, revealing shear thin-
ning behavior and demonstrating the validity of the Cox-

Merz rule. Based on this behavior, we de fined a White-
Metzner type constitutive equation, which fully ac -
counts for the nonlinear viscoelastic properties of the sil-
icone oil, including shear thinning and the decrease of
both moduli with increasing strain amplitude in ampli-
tude sweep tests.
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Figure 9: Amplitude sweep data compared to their simulations with White-Metzner model (Equations 9 and 10) at lower and at
higher angular frequencies.
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