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ABSTRACT:

We modify a commercial rheometer so that the disks are aligned perpendicular to the axis of rotation with a precision in par-
allelism of about 1 um independent of the rheometer reading. This leads to decrease the zero-gap error by a factor of 25 and
more. It enables samples to be studied at gap widths well below the absolute error of commercial rheometers. At gap widths
of 20 um, the modification allows the measurement range to be extended to shear rates up to 105 s enabling to measure low
viscosities such as that of solvents or water and of dilute polymer solutions. The measurements are restricted mainly by the
torque resolution at low shear rates and by inertia at high shear rates.
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1 INTRODUCTION

Commercial rotationalrheometers are used tomeasure
a wide range of viscosities at shear rates up to about
103 7. Low viscosities may be determined with a dou-
ble-gap cylindrical system. The parallel-disk configura-
tion is usually employed for higher viscosities at gap
widthsofabout1mm.Yet,ithastheadvantagetoselect
the shear-rate range by adjusting the gap width. At gap
widths below about 100 um, however, it suffers from
errors in determining the zero point. They are caused
by viscous resistance to squeeze flow during zeroing
and by unevenness and small inclination angles of the
plates [1—4]. For the zero-gap error effective values of
about 25 um or larger have been reported [3, 5, 6]. While
the data may be corrected for the zero-gap error, plate
inclination and unevenness result in a superposition of
elongation flow with the shear flow, which is difficult
to access [7]. At low torques, apart from the rheometer
resolution, precision is further reduced by contact line
forces, which result in a constant torque offset [8].
Avalue 20 times larger than the manufacturer’s speci-
fication has been used as a practical low-torque limit
[9, 10]. At high shear rates, the measurement range is
restricted due to viscous heating, inertial deviations

from viscosimetric flow and radial migration due to
centrifugalforces or normalsstress differences that may
overcome surface tension forces [1, 2, 11-14].

Working atthin gaps offersanumber of advantages
for commercial rheometers. It extends, for instance, the
working range to higher shear rates. Reducing the gap
width by about two orders of magnitude increases the
maximum shear rate accordingly while thresholds for
flow instabilities are shifted to higher shear rates. This
enables to carry out measurements at shear rates up to
105 s of viscosities below 1mPa-s. Also the required
amount of sample is drastically reduced, making it
attractive for expensive or rare samples. In our setup,
about 40 ul are required at a gap width of 20 um. Thin
gaps, in principle, also allow for better temperature con-
trol at high shear rates. Furthermore, it enables to study
the effect of geometrical confinement [15] and the rhe-
ology of biological cells [16].

Several groups have built piezoelectric devices to
carry out oscillatory studies at gap widths below 100 um
[17—-20]. At small amplitudes frequencies up to the kHz
region can be explored. Granick and co-workers devel-
opedashearapparatusforoscillatory studies that works
at gap widths down to the sub micrometer range [21,
22]. McKinley and his group reached these gap widths
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viscosity function of the aqueous 0.5 wt.% xanthan
solution at gap widths of 1000 um, 100 um and 20 um.
The open symbols indicate data at a torque below
10 uNm (atlow shearrates) and dataataReynolds num-
ber beyond 10 (at high shear rates). In this case, the
Reynolds number was defined with the measured vis-
cosity. For the poly(ethylene oxide) solution, at a gap
width of 100 um this Reynolds number limit is reached
at a shear rate below 104 5. Reducing the gap width to
20 um moves this limit to a shear rate of about 105 s™.
The minimum shear rate due to the low-torque limit
does not depend on the gap width. Yet, as discussed
before, at lower shear rates data scatter at 20 um gap
width is larger than at 100 um.

For the xanthan gum solution, at a gap width of
1000 um a Reynolds number of 10 is reached at a shear
rate below 103 s as shows Figure 4(b). This limit is
reached at gap widths of 100 um and 20 um at shear
rates of about 104 s and 105 s, respectively. The data
obtained for different gap widths nicely overlap at high
shear rates. At high shear rates strong deviations from
the power law is observed and a plateau at high shear
rates seems to be reached. Measuring the disk-surface
temperature on the gap side after maintaining the
shear rate at104s™for100 s did not show any deviation
from ambient temperature. Increasing the shear rate
to 105 s like in Figure 4 resulted in a temperature
increase of 0.2 K for the poly(ethylene oxide) and xan-
than samples. Finally, we remark that the zero-shear
viscosity could not be determined at a gap width of
1000 um for the poly(ethylene oxide) solution.

4 CONCLUSIONS

We modified a commercial rheometer to align the
plates in a parallel-disk configuration perpendicular to
the rotational axis. Parallelity is controlled with a pre-
cision of about 1 um. This modification allows to over-
come the significant error in the gap height while zero-
ing the device plates. This enables to measure low vis-
cosities with a parallel-disk configuration. The mea-
surement range is restricted at low shear rates by the
torque limit of the rheometer and at high shear rates
by inertia. At gap widths of about 20 um, deviations
fromviscosimetric flow in thin gaps are shifted to high-
er shear rates, enabling shear rates to be covered up to
about105s™.
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