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1 INTRODUCTION

The modelling of annular extrudate-swell and cable-
coating flows, with dynamic free-surfaces, remains a
popular topic which has motivated many studies over
recent years. In this context, extrudate- or die-swell has
been adopted as a benchmark viscoelastic flow prob-
lem [1], characterised by specific features of: the pres-
ence of a sharp separation point at the exit of the die,
the location and shape of the free-surface spawned,
and the impact of viscoelastisty upon flow response
(see for example [2 – 5]).

Moreover, there have been a number of studies
that have addressed the modeling of cable-wire coating
for tube-tooling (see for example [6 – 8]). These have
provided some progress within the inelastic, non-iso -
thermal and viscoelastic regimes. In their work, visco -
elas tic coating flows were simulated with a Phan-

Thien/Tanner (PTT) model and solved with a finite ele-
ment technique. Based on, a time-stepping Taylor-
Galerkin/pressure-correction finite element frame work
[9], tube-tooling extrusion coating with a low-density
polymer melt has been analysed by Mutlu et al. [10]. In
this study, and whilst addressing the coupling in the sys-
tem between velocity and stress, both decoupled and
coupled numerical approaches were adopted. The
strain-hardening/softening, shear-thinning properties
of the polymeric coatings were approximated with the
exponential form of the Phan-Thien/Tanner (EPTT)
model. There, the decoupled scheme was advocated to
handle numerical solution instabilities at low-solvent
concentrations representative for polymer melt re -
sponse (β ≤ 10-3). Building upon this success, Matallah et
al. [11] used the finite element method to simulate high-
speed viscoelastic wire-coating, again em ploying cou-
pled and decoupled schemes. There, predictions for a

Numerical Computation of Extrusion and Draw-extrusion 
Cable-coating Flows with Polymer Melts

A. Al-Muslimawi1,2, H.R. Tamaddon-Jahromi3 and M.F. Webster3*

1 Swansea University, College of Science, Mathematics, Singleton Park, Swansea SA2 8PP, United Kingdom
2 Basra University, College of Science, Mathematics, Baghdad Street, AL-Basra, 61004, Iraq

3 Swansea University, Institute of Non-Newtonian Fluid Mechanics, Singleton Park,
Swansea SA2 8PP, United Kingdom

*Corresponding author: m.f.webster@swansea.ac.uk

Received: 31.7.2013, Final version: 15.12.2013

Abstract:
This paper is concerned with the numerical solution of polymer melt flows of both extrudate-swell and tube-tooling die-extru-
sion coatings, using a hybrid finite element/finite volume discretisation fe/fv. Extrudate-swell presents a single dynamic free-
surface, whilst the complex polymer melt coating flow exhibit two separate free-surface draw-down sections to model, an
inner and outer conduit surface of the melt. The interest lies in determining efficient windows for process control over varia-
tion in material properties, stressing levels generated and pressure drop. In this respect, major rheological influences are eval-
uated on the numerical predictions generated of the extensional viscosity and Trouton ratio, when comparing solution
response for an exponential Phan-Thien Tanner (EPTT, network-based) model to that for a single extended Pom-Pom (SXPP,
kinematic-based) model. The impact of shear-thinning is also considered. Attention is paid to the influence and variation in
Weissenberg number We, solvent-fraction β (polymeric concentration), and second normal stress difference N2 (ξ parameter
for both EPTT, and a anisotropy parameter for SXPP). The influence of model choice and parameters upon field response is
described in situ through, pressure, shear and strain-rates and stress. The numerical scheme solves the momentum-continu-
ity-surface equations by a semi-implicit time-stepping incremental Taylor-Galerkin/pressure-correction finite element
method, whilst invoking a cell-vertex fluctuation distribution/median-dual-cell finite volume approximation for the first-order
space-time hyperbolic-type stress evolution equation.

Key words:
Taylor-Galerkin, tube-tooling, cable-coating, die-extrusion, free-surface, exponential Phan-Thien Tanner model, single extend-
ed Pom-Pom model

| DOI: 10.3933/APPLRHEOL-24-34188 | WWW.APPLIEDRHEOLOGY.ORG

This is an extract of the complete reprint-pdf, available at the Applied Rheology website
http://www.appliedrheology.org

This is an extract of the complete reprint-pdf, available at the Applied Rheology website
http://www.appliedrheology.org



© Appl. Rheol. 24 (2014) 34188 |   DOI: 10.3933/ApplRheol-24-34188 |   14 |

ity property). This has been ac com plished here by fixing
eSXPPP and allowing q to vary. Here, a near-optimal least-
squares fit has been extracted to experimental data,
across the complete range of shear and extensional vis-
cosity. Through the knowledge on molecular stretch, the
SXPP model provides a way forward in practical applica-
tions where one seeks to take advantage of recovering
structures in a complex flow.

Initially, the extrudate-swell benchmark problem
with a dynamic free-surface has been studied, and then,
subsequently extended into a study on the more com-
plex industrial flow of tube-tooling cable-coating. The
latter problem manifests two separate top and bottom
moving free-surfaces. For the extrudate-swell problem,
attention is paid to describe the impact of Weissenberg
number We and solvent-fraction on swelling ratio. Fin -
dings reflect that, an increase in swelling occurs asWe
increases and β decreases. In addition, strain-rate sta-
bilisation has also been investigated for this problem
to interrogate the influence of singularity capturing on
the die-exit solution. In this respect, it has been suc-
cessfully demonstrated that such treatment can have
a significant impact on the peak-level of stress exiting
the die. In turn, this influences the accurate determi-
nation of free-surface profiles, where such variation has
been detected in swelling-ratio at selected Weis-
senberg numbers. Moreover, the swelling ratio is also
observed to decrease when some non-zero second-nor-
mal stress-difference is incorporated within the model
representation.

Under tube-tooling flow with the EPTT and SXPP
models, the respective influences of Weissenberg num-
ber We, solvent-fraction β, and second normal stress-
difference N2 (ξEPTT for EPTT, ξSXPP and aSXPP for SXPP)
have each been systematically investigated. Under
shear-thinning properties, a decline in the total pres-
sure-drop is observed as Weissenberg number We
increases and solvent-fraction β decreases. Under We
variation, a weak contribution of radial stress τrr arises,
leading to minor adjustment in the normal stress τzz
and first normal stress N1. Comparative data are pre-
sented for SXPP and EPTT solutions, governing total
pressure-drop and stress production, both with and
without N2 contributions. Generally, lower levels of
pressure-drop and stress are observed in SXPP as op -

posed to EPTT predicted solutions, due to the exagger-
ated propensity of SXPP to thin at faster rate than for
EPTT. Furthermore, a lower level of residual-stress N1 is
observed in the final coating at higher levels of elastic-
ity: for example with EPTT, there is a drop of almost 30
% in peak-value from theWe = 5 toWe = 20 solution.
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