
1 INTRODUCTION

Many applications bring in dispersions of clay particles
in various kinds of suspending media: cosmetics for-
mulation, fiber technology or drilling fluids for oil recov-
ery. For instance, the presence of clay as a filler in a poly-
meric matrix improve fire resistance of fibers [1, 2]. In
water-based drilling fluids, bentonite dispersions in
carboxymethylcellulose (CMC) aqueous solutions are
widely used [3]. The specific multiscale organization of
the clay particles and the balance between the parti-
cle/particle and particle/suspending medium interac-
tions lead to the formation of various types of particle
associations [4]. Then, complex rheological behavior
may be observed: thixotropy, existence of a yield stress,
gel-like behavior. Complex flow curves are obtained [5].
When the suspending liquid is a salt aqueous solution,
sol-gel transitions depend on the particle concentra-
tion and on the ionic strength [6]. In a polymer solution
or in a polymeric matrix, intercalation of the polymer-
ic chains between clay platelets may occur [7, 8]. Usu-
ally, the rheological properties of clay dispersions are
very sensitive to the mechanical history (especially the
stirring time) of the samples and are time-dependent

[9– 11]. To model thixotropic phenomena, a structural
kinetic approach is sometimes used [12, 13]. Long-term
ageing (up to 1000 days) effects have also been inves-
tigated in case of laponite/PEO-water solution [14].

The concept of yield stress and its experimental
determination have already been widely discussed in the
literature. The basic simple idea is that, for a yield stress
fluid, the material flows if the applied stress σ is larger
than a critical one σy . Below this value, there is no flow.
This behavior can be modelled by the well known Bing-
ham or Herschel-Bulkley equations. But, in fact, the tran-
sition between “no flow” and “flow” is not so easy to
determine. In other words, what physically happens be -
low the yield stress? The review paper by Barnes [15] pre-
sents experimental results on different materials such as
penicillin broth, carbopol dispersions or blood. The
results, plotted as viscosity versus the shear stress, dis-
play a high Newtonian plateau value followed by a sharp
decrease of the viscosity at the yield stress. Such two vis-
cosity level curves can be modelled using an Ellis model
or a composite Ellis model [16]. But, in other systems, a
transition between a solid-like and a liquid-like behavior
is observed. In case of physical gels, carbopol gels for
instance, the transition is not abrupt but occurs over a
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0.5HVB5. For B5, there is a smoother increase of the
strain at low stress in the range which had been ex -
plored. So, the second equation is introduced to take in
account this effect. Five parameters are defined: the
classical parameters of the H-B model, a critical strain
related to the transition between the “yielding” and the
flow regimes and an exponent a related to the stress-
strain dependence at low shear stresses.

The behavior of the two systems characterized by
the same bentonite concentration seems quite similar;
nevertheless, the origin of these gel-like behaviors is not
the same. Previous studies had shown that ageing has
different effects on these two systems [27]: one ob -
serves an increase of the yield stress for B5 which be -
comes more and more elastic (below the yield stress).
This is the contrary for 0.5HVB5, which flows easier
according to the ageing. Bentonite is a montmorillonite,
characterized by a multi-scale organization [41]: pla -
telets are regrouped and form primary particles, which
are themselves associated to form aggregates. In water
at pH10 according to [4, 28, 29] bentonite particles form
quite open 3D structures and ageing favors swelling of
particles and the increase of inter-particules connec-
tions. The value of the parameter a, smaller than 1, is
probably related to a progressive breakdown of the
microstructure of the gel. In the CMC/water solution,
X-ray diffraction spectra show that there is no exfolia-
tion of the clay platelets and no intercalation of the poly-
meric chains. The polymer prevents the exfoliation. So,
the network results from connections between clay par-
ticles or aggregates through the chains and the cross -
links should be quite labile. The yield stress determined
for B5 is larger than for 0.5HVB5, probably due to stron -
ger interaction energy between the particles. The mod-
ulus G is larger for 0.5HVB5 than for B5 what incites to
assume a greater density of the crosslinks in the first
case. Oscillatory measurements give a lot of informa-
tion on the material in the linear regime. Cox-Merz rule
does not apply in our cases since the systems are com-
plex and modification of their microstructure occurs
under stress. We use the representation proposed by
Winter and compare the shear viscosity versus stress to
the complex viscosity versus the complex modulus. This
representation emphasizes the “solid-liquid” transi-
tion. A rescaling of the magnitude of the complex mod-
ulus, based on the parameters determined by the mod-
els leads to a quite good superposition of transition
zones obtained in permanent and oscillatory shear
flows. Finally, it is important to observe that the systems
are time dependent and the models represent the
answer of the systems to a given solicitation and do not
provide “intrinsic” properties of the material. Never-
theless, it allows comparison be tween different mate-
rials submitted to the same soli citation.
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