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1 INTRODUCTION

Measuring viscoelastic properties of various techno-
logical materials, including colloid systems, gels, poly-
meric compositions (solutions, melts, multicomponent
mixtures) and so on in periodic oscillations is one of the
most important and widely used methods of their char-
acterization. This method allows us to find relaxation
modes of matter in very wide frequency-temperature
ranges [1, 2]. According to the basic relationships of lin-
ear viscoelasticity [2 – 4], results of these measure-
ments are related to the relaxation spectrum of a mat-
ter and allow us to calculate stress vs. deformation
dependencies at any loading mode. The theory of vis-
coelasticity in its classical version relates to the range
of low deformations and stresses strictly proportional
to deformations at any time, though different versions
of non-linear generalization of the theory are also
known [5]. During the last decade, the interest for mea-
suring non-linear viscoelastic properties of different
matters by creating large amplitude oscillatory strain
(LAOS) increased sharply.

It is necessary to stress that speaking about large
de formations, two phenomena different by their phys-
ical sense are meant [6, 7]. Firstly, large (in comparison
with one) deformations lead to geometrical non-lin-

earity. In this case, the region of amplitudes corre-
sponding to linear behavior may appear rather wide,
especially for rubbery materials. Secondly, large defor-
mation (or more exact, large stresses) can lead to phys-
ical non-linearity. It consists in rupture of the structure
of a matter. This is characteristic, e.g. for suspensions
where the inherent structure is built from hard and rigid
dispersed particles. In this case, non-linear behavior is
observed already at low (in comparison with one) defor-
mations and develops rather abruptly.

Different approaches to treating the results of LAOS
experiments have been proposed and discussed in cur-
rent publications. The most evident approach consists in
estimating non-linear material properties are analyzed
as though they would be measured in a linear region.
Then the values of storage and loss mo du lus are used
and just these parameters are given by the software of
industrial devices [8 – 11]. It is evident that it is unaccept-
able because these values are not adequate and insuffi-
cient for characterization of the properties of a sample.
Then the rather evident ap proach to treating non-linear
data in LAOS consists in the presentation of a non-linear
response via the Fourier series (e.g. [12 – 18]):
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