Abstract:
This article reports viscosity data on a series of colloidal dispersions collected as part of the International Nanofluid Property Benchmark Exercise (INPBE). Data are reported for seven different fluids that include dispersions of metal-oxide nanoparticles in water, and in synthetic oil. These fluids, which are also referred to as 'nanofluids,' are currently being researched for their potential to function as heat transfer fluids. In a recently published paper from the INPBE study, thermal conductivity data from more than 30 laboratories around the world were reported and analyzed. Here, we examine the influence of particle shape and concentration on the viscosity of these same nanofluids and compare data to predictions from classical theories on suspension rheology.

Viscosity Measurements on Colloidal Dispersions (Nanofluids) for Heat Transfer Applications

David C. Venerus¹*, Jacopo Buongiorno², Rebecca Christianson³, Jessica Townsend³, In Cheol Bang⁴,⁵, Gang Chen², Sung Jae Chung⁶, Minking Chyu⁶, Haisheng Chen⁶, Yulong Ding⁶, Frank Dubois⁷, Grzegorz Dzido⁸, Denis Funfenschilling⁹, Quentin Galand⁹, Jinwei Gao², Haiping Hong¹⁰, Mark Horton¹⁰, Linwen Hu², Carlo S. Iorio², Andrzej B. Jarzebski⁸, Yiran Jiang¹, Stephan Kabelac¹¹, Mark A Kedzierski¹², Chongyoup Kim¹³, Ji-Hyun Kim¹³, Sukwon Kim¹³, Thomas McKrell², Rui Ni¹⁴, John Philip¹⁴, Naveen Prabhat², Pengxiang Song¹⁵, Stefan Van Vaerenbergh¹⁵, Dongsheng Wen¹⁵, Saneeka Witharana⁶, Xiao-Zheng Zhao⁹, Sheng-Qi Zhou⁹

¹ Illinois Institute of Technology, 10 W. 33rd St., Chicago, IL 60616, USA
² Massachusetts Institute of Technology (MIT), 77 Massachusetts Avenue, Cambridge, MA 02139, USA
³ Olin College of Engineering, Olin Way, Needham, MA 02492, USA
⁴ Ulsan National Institute of Science and Technology, School of Energy Engineering, San 194 Banyeon-ri, Eonyang-eup, Ulju-gun, Ulsan Metropolitan City, Republic of Korea
⁵ Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
⁶ University of Leeds, Clarendon Road, Leeds LS2 9JT, UK
⁷ Université Libre de Bruxelles, Chimie-Physique E.P. CP 165/62 Avenue P.Heger, 1050, Bruxelles, Belgium
⁸ Silesian University of Technology, Department of Chemical and Processing Engineering, ul. M. Strzody 7, 44-100 Gliwice, Poland
⁹ Chinese University of Hong Kong, Department of Physics, G6, North Block, Science Center, Shatin NT, Hong Kong, China
¹⁰ South Dakota School of Mines and Technology, 501 E Saint Joseph Street, Rapid City, SD 57702, USA
¹¹ Helmut-Schmidt University Hamburg, Institute for Thermodynamics, 22039, Hamburg, Germany
¹² National Institute of Standards and Technology (NIST), MS 863, Gaithersburg, MD 20899, USA
¹³ Korea University, Anam-dong, Sungbuk-ku, Seoul 136-713, Republic of Korea
¹⁴ Indira Gandhi Centre for Atomic Research, SMARTS, NDED, Metallurgy and Materials Group, Kalpakkam-603102, India
¹⁵ Queen Mary University of London, School of Engineering and Materials Science, Mile End Road, London, E1 4NS, UK
¹⁶ University of Pittsburgh, Dept. Mechanical Engineering and Materials Science, 648 Benedum Hall, 3700 O’Hara Street, Pittsburgh, PA 15261, USA

* Email: venerus@iit.edu
Fax: x1.312.567.8874

Received: 2.11.2009, Final version: 15.12.2009
than predicted: measured stronger dependence on particle concentration with spherical particles in Figure 7 show a slightly dependence of spherical and rod-shaped particles show a linear as with the viscosity data, nanofluids with both spherical and rod-shaped nanoparticles show a linear dependence of η/η_0 versus particle concentration ϕ. The data for the fluids with spherical particles in Figure 7 show a slightly stronger dependence on particle concentration than predicted: measured $[k] = 4.0$, and predicted $[k] = 3.1$. This observation is consistent with the presence of particle agglomeration in these systems, and suggests that particle clustering has a large effect on viscosity than thermal conductivity in nanofluids with spherical particles. The situation is different for the nanofluids with rod-shaped particles as shown in Figure 8. Here, the observed dependence on particle concentration is weaker than predicted: measured $[k] = 5.6$, and predicted $[k] = 13.3$. Apparently, particle agglomeration can significantly reduce the effective thermal conductivity of nanofluids with rod-shaped particles. A second explanation for the reduction in effective thermal conductivity in these nanofluids is interfacial thermal resistance [16].

4 CONCLUSIONS

Viscosity data have been collected as part of an International Nanofluid Property Benchmark Exercise (INPBE). These data are from approximately 10 different laboratories around the world on a series of 10 different nanofluids and their base fluids. In general, the agreement between different laboratories was good with variations of approximately ±20%, which, in part, could be explained by lab-to-lab temperature variations. Two of seven nanofluids showed shear-thinning behavior; the remaining five showed Newtonian behavior. For nanofluids with both spherical and rod-shaped nanoparticles, the dependence of viscosity (relative to the base fluid viscosity) on particle concentration (volume fraction) was significantly stronger than predicted by dilute suspension theory. This discrepancy was attributed to particle agglomer-
tion. In contrast, the observed enhancement in thermal conductivity was slightly larger for the spherical particle fluids, and significantly lower for the rod-shaped particle fluids, than predicted by effective medium theory. As noted in the introduction, criteria for the overall effectiveness of nanofluids as heat transfer fluids have been proposed [9, 12], which suggest \[h \] should be 4 - 5 times smaller than \[k \]. Clearly, the nanofluids considered in this study would fail; this suggests that the overall effect of adding nanoparticles to the base fluid is negative in terms of heat transfer performance.

ACKNOWLEDGEMENTS

This work was made possible by the support of the National Science Foundation under grant CBET-0812804. The authors are also grateful to Sasol and W. R. Grace & Co. for donating some of the samples used in INPBE.

REFERENCES