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Abstract:
It is shown that the combined use of a mesoscopic lattice Boltzmann solver with finite-volume techniques, both
enriched with local-refinement (multiscale) capabilities, permits to describe transport phenomena at fluid-solid
interfaces to a degree of detail which may help dispensing with empirical correlations. 

Zusammenfassung:
Es wird gezeigt, dass die kombinierte Benutzung eines mesoskopischen Lattice-Boltzmann-Solvers mit Finite-
Volumen- Methoden, beide durch die Möglichkeit einer höheren örtlichen Auflösung verstärkt, es erlaubt, Trans-
portphänomene zu beschreiben.

Résumé:
On montre que l’usage combiné d’une méthode mésoscopique Lattice-Boltzmann avec des techniques Volumes-
Finis, les deux enrichies d’un maillage plus précis, permet de décrire des phénomènes de transport sur les inter-
faces fluide-solide, avec un niveau de détail tel qu’on peut éviter l’usage de corrélations empiriques.
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1 INTRODUCTION
Transport phenomena at fluid-solid interfaces
play a major role in many emerging applications
in material science, micro-engineering and biol-
ogy [1]. Central to all of these applications is the
quantitative assessment of the rate of absorp-
tion at fluid-solid interfaces of chemical species
(typically reactive pollutants) carried by a fluid
flow. A typical example in point are catalytic reac-
tors, in which the absorbed species are convert-
ed into harmless reaction products via hetero-
geneus catalytic reactions. The rate of absorption
of the pollutant, which controls the overall con-
version efficiency of the catalytic device, depends
crucially on the fine-scale details of fluid motion
in the near-wall region. It is therefore clear that
the microstructural conformation of the solid
wall plays a major role in fixing the amount of
pollutant absorbed at the solid interface. Since
the micro-scale details of the wall geometry are
not accessible to a macroscopic direct simulation
for lack of computational resolution, their effects
on the conversion efficiency are generally repre-

sented in a statistical sense, through the specifi-
cation of average properties. Particularly impor-
tant is the wall roughness, defined as the mean
elevation of the wall profile, h–, relative to the
global scale H of the flow domain e = h–/H. Chem-
ical absorption is then expressed via semi-empir-
ical correlations between the major control para-
meters of the problem, namely the Reynolds
number Re = UH/n, and the Péclet number
Re = UD/D, where U is a typical flow speed, n the
kinematic viscosity of the fluid carrier and D the
molecular diffusivity of the chemical species.
Central to this analysis is the Darcy-Feisbach fric-
tion factor, defined as the relative amount of
kinetic energy lost on frictional drag to the walls
f = 2DP/rU2. Here r is the fluid mass density and
DP is the pressure loss between the inlet and out-
let sections of the flow domain. The friction fac-
tor is typically a function of the Reynolds number
and the wall roughness e. Such a dependence is
tabulated in the so-called Moody charts, which
form the basis of most practical calculations [2].
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of the thin channel. We performed a series of sim-
ulations at Re = 90, 180, 250, 300 using 10 grid
points along the vertical direction and 700 along
the channel length (no-grid refinement). With-
out grid refinement, none of these cases could be
completed successfully. With local grid refine-
ment, we obtained A = 48.1, 48.4, 49.8, 50 and 
B = 0.35, 0.345, 0.31, 0.304. The coefficient A is very
close to the analytical value for a plane Poiseuille
flow (A = 48). Besides the numerical values, which
compare reasonably well with experimental
data in similar (but not exactly the same) condi-
tions (A ~ 43, B ~ 0.42 - 0.5; [24]) it is important
to observe that these coefficients show the
expected independence of the Reynolds number
Re = ud/n to a fairly acceptable degree of accura-
cy. This is in agreement with experimental find-
ings, and lends further support to the physical
consistency of the present method. In this work
we have examined flows at low-moderate
Reynolds numbers, for which no significant

three-dimensional effects are expected. Howev-
er, appreciable three-dimensional effects would
surely arise in the presence of explicitly three-
dimensional corrugations, such as those adopt-
ed to increase the mixing efficiency of micro-
reactors [25] .  Extending the present
methodology to three-dimensional situations is
an important task for future research. Another
important task for future research is the
improvement of the inter-grid boundary condi-
tions. The basic requirement of these inter-grid
boundary conditions is to impose continuity of
the conserved quantities as well as that of their
fluxes, across the interface. In the Filippova-
Haenel’s approach used here, continuity of the
fluxes is imposed perturbatively, by expressing
the non-equilibrium component of the distribu-
tion function via first-order space-time deriva-
tives of the local equilibrium.

This provides pretty reasonable results,
not only for the flow field itself, but also for more
sensitive observables, such as the strain Sxy =
(∂yu + ∂xv)/2 (Fig. 10). However, the perturbative
nature of this procedure may well require
improvements whenever the local Knudsen
number at the grid interfaces is no longer negli-
gible. A non-perturbative formulation of the
intergrid boundary conditions represents an
interesting topic for further research.

Figure 9 (left): Blow-up of
the inlet region of the

monolithic converter, with a
typical flow configuration

at Re = 250. The solid circles
represent wall sites.

Note that three regions of
refinement 1:1 (far-inlet), 

1:4 (near-inlet), and 
1:2 (thin-channel) have 

been used.

Figure 10 (right): Contour
lines of the strain Sxy in the

inlet region of the
monolythic converter for

the same case as Fig. 9. Note
that the contour lines

(from 1.5 ¥ 10-3 to 10-4) 
do not suffer any visible 
discontinuity at the grid

interface.

Applied Rheology Vol.14/1.qxd  08.03.2004  8:13 Uhr  Seite 20

This is an extract of the complete reprint-pdf, available at the Applied Rheology website
http://www.appliedrheology.org

This is an extract of the complete reprint-pdf, available at the Applied Rheology website
http://www.appliedrheology.org



5 CONCLUSIONS AND FUTURE 
DIRECTIONS
The lattice Boltzmann method shows increasing
promise of representing a valuable tool for the
computational analysis of multiscale fluid flow
problems [26]. To this purpose, the native LB
method requires substantial boosts in geometri-
cal flexibility, to straddle across different scales,
as well as in physical versatility, to accomodate
additional physics besides fluid flow. Coupling of
LB methods with existing transport algorithms
within a grid-refined framework represents just
one out of many possible strategies to accom-
plish the aforementioned task. The results pre-
sented in this work provide encouraging evi-
dence that lattice Boltzmann solvers, coupled to
a standard Finite-Volume treatment of scalar
transport, both enriched with local-refinement
capabilities, may prove very effective for the
direct simulation of transport phenomena in
low-Reynolds fluids. Much more validation and
application work is clearly needed to put the pre-
sent methodology on a firmer basis and extend
its range of applications. In particular, three-
dimensional extensions, non-perturbative for-
mulations of inter-grid boundary conditions, and
use of more sophisticated boundary conditions
for arbitrarily shaped boundaries, appear of
utmost importance to address real-life problems.
Work along these lines is currently underway 
[27, 28]. 
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1 Despite the ‘Integer’ in the title of the paper, the
method is perfectly well suited to floating-point
implementations.
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