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1 INTRODUCTION

The material behavior of soft matter can often be
described by material models belonging to the class of
yield stress fluids. So, how can yield stress fluids be dis-
tinguished from classical materials – solids and liquids
– in case of phenomenological modeling? This directly
leads to the question of convenient classification crite-
ria to separate solids, liquids and yield stress fluids from
each other. The search for a definition of the terms sol-
id and liquid has a long history [1]. For example Bing-
ham [2] said “If a body is continuously deformed by a
very small shearing stress, it is a liquid, whereas if the
deformation stops increasing after a time, the sub-
stance is a solid”. Noll defined solids and liquids relat-
ing to its symmetry properties [3 – 8]). But Greve [7]
pointed out that there are materials which are neither
solids nor fluids in the sense of Noll’s definitions. There
also exists a classification into solid and liquid-like
behavior depending on the storage and loss modulus.
Solid-like behavior occurs if G’ > G’’, otherwise liquid-
like behavior [9 – 14]. A disadvantage of this definition
becomes obvious for example in case of the Maxwell
element with the elastic moduls G and the viscosity h,
which has to be classified either as solid or liquid

depending on the angular frequency w. For w < G/h the
loss modulus is greater than the storage modulus so
that the Maxell element has to be treated as fluid. On
the other hand it has to be classified as liquid for w >
G/h since the storage modulus dominates over the loss
modulus. Thus, the search of phenomenological defin-
itions of ‘solid’ and ‘liquid’, which can be applied theo-
retically as well as practically, is still necessary in gen-
eral and especially to define the class of yield stress
fluids. Furthermore, this contribution investigates the
way of defining the term ‘viscosity’ since the behavior
of yield stress fluids is dramatically different to the one
of Newtonian fluids due to yielding.

Classifying materials as well as defining ‘viscosity’
is essential also in practice e.g. for material modeling.
To determine the class of a material behavior should be
the first step before applying constitutive equations.
Determining the differential viscosity enables to ex -
tract the pure viscous properties of a yield stress fluidic
material specimen which is necessary to model it. That
is why, this article places a great emphasise on basics
of yield stress fluids in the sense of phenomenological
modeling, material classification as well as the differ-
ential viscosity and is useful in terms of practical ques-
tions. It
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� introduces a terminology for yield stress fluids so that
they can be distinguished from solids and liquids

� presents a measurement procedure to determine
the class of a material behavior, either solid, liquid
or yield stress fluid

� works out the deficit of defining the viscosity as
dynamic viscosity in case of yield stress fluids and
show the benefit of using the differential viscosity
and

� defines the terms ‘preyield’ and ‘postyield’ for the
friction and Bingham element.

The paper is outlined as follows: The first classification
criterion, the equilibirum relation, is defined in Sec-
tion 2. The flow function, the second classification cri-
terion, as well as the differential viscosity are intro-
duced by the steady state material response to a
constant strain rate loading in Section 3. On this basis,
the new material classification is proposed in Section 4
so that the terms ‘solid’, ‘liquid’, and ‘yield stress fluid’
can be distinguished. This theory is applied in Section 5
to standard and extended rheological elements to
demonstrate its working principle. Therefore, the con-
stitutive equations of the standard rheological ele-
ments are briefly summarised in Section 5.1. The advan-
tage of the differential viscosity is demonstrated in
Section 5.2. The new material classification is then ap -
plied to the standard rheological elements in Section
5.3 and extended rheological elements in Section 5.4.

In addition to these general aspects, the article uses
modified constitutive equations for the friction element
which ensure that the material model is valid for the
preyield as well as for negative and positive strain rates.
To define the terms ‘preyield’ and ‘post yield’ in case of
the friction element, its constitutive equations are giv-
en in terms of the yield function, an associated flow rule,
the Karush-Kuhn-Tucker and consistency conditions in
Supplemental Information A. This allows for a more
general representation in case of hardening. With the
help of logical statements, given in Supplemental Infor-
mation A.1 and A.2, the Karush-Kuhn-Tucker and con-
sistency conditions can be reconstructed in a convenient
way without discussing the optimisation with con-
straints in form of inequalities. The analytical expres-
sions which are behind the figures of Section 4 to
describe the behavior of solids, liquids and yield stress
fluids are specified in Supplemental Information B.

2 SPLIT OF THE TOTAL STRESS INTO AN
EQUILIBRIUM AND OVERSTRESS

Haupt proposed a classification which divides the ma -
te rial behavior by examination of two classification cri-
teria, the shape of the equilibrium relation teq – geq [6,
15, 16] and the rate dependency [6, 15, 17 – 20]. A state of
equilibrium in this meaning is defined according to the
basic assumption that a dynamic process always goes
into a state of standstill if the external conditions are
kept constant [6]. A stress which corresponds to a state
of equilibrium in a material model is called equilibrium
stress teq [6, 15, 19]. The difference between the total
stress and the equilibrium stress is defined as over-
stress tov [6, 19, 20]

(1)

and vanishes by definition for the state of equilibrium.
Each point (g eq.i, t eq.i) on the equilibrium relation can
be determined by the limit value of a relaxation process
[6, 19, 21], see Figure 1 with b=g, even if the equilibrium
relation is zero. Here b is the control quantity of the
process. For a better understanding, the total stress t
and the equilibrium stress t eq of a viscoplastic materi-
al [6] are plotted in Figure 2b for a cyclic loading [6]
according to Figure 2a with b=g [6, 19, 21]. If relaxation
experiments with sufficiently long holding times Dt at
different strain levels g i are performed as it is shown in
Figure 1, the total stress relaxes to the equilibrium stress
as it is denoted by colored circles. In terms of theoreti-
cal and experimental observations
� relaxation (b=g= const) always implicates a state of

equilibrium whereat (S1)
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Figure 1: Determination of the equilibrium relation by the limit
value of a relaxation process (b = g) or creep process (b = t).

Figure 2: Total stress t (b) of a viscoplastic material according
to a cyclic loading (a) with the strain b = g as control quanti-
ty; equilibrium stress teq (b) due to relaxation relating to Fig-
ure 1 with b = g.

(a)

(b)



� a creep load (b= t= const) not always tends to an
equilibrium [6, 22]. (S2)

This can be reproduced by the determination of the equi-
libirum of standard rheological elements in Section 5.3.

3 DIFFERENTIAL VISCOSITY DEFINED BY THE
STEADY STATE MATERIAL RESPONSE TO A
CONSTANT STRAIN RATE LOADING

To be able to define the differential viscosity, the steady
state stress t¥ related to a constant strain rate g·~

(2)

has to be introduced first. This directly leads to the flow
function t¥(g·~). The viscosity h is calculated from the
flow function. It is a material parameter and cannot be
measured but defined in a proper way. “It is, of course,
entirely a matter of convention” [23]. Independent from
the definition, the viscosity has to be an even function
[24, 25]

(3)

To ensure this, it is plotted for positive and negative
strain rates in Figure 5. The apparent or dynamic vis-
cosity is calculated by

(4)

A disadvantage of using the dynamic viscosity in case
of yield stress fluids is that their zero viscosity

(5)

is infinite [26] if the stress does not tend to zero as fast
as the strain rate. This can be explained by means of the
friction and Bingham element in Section 5.2. One can
get rid of this problem, if the viscosity is rather defined
by the differential viscosity

(6)

Another argument to prefer the differential against the
dynamic viscosity in case of non-Newtonian fluids is its
physical interpretation. It can be seen in Figure 3 that
the increase of the stress Dt¥ due to the increase of the
strain rate Dg·~ is directly related to the differential vis-
cosity being the tangent to the flow function. Thus, it
is nothing more than the linear term of the Taylor series

(7)

and is given by Dt¥ = hdiff|g·~=g· *Dg
·~. In contrast to this, the

dynamic viscosity is just the secant and has no physical
interpretation. This is explained in Section 5.2 on the
basis of the Kelvin-Voigt, friction and Bingham ele-
ment.

4 CLASSIFICATION OF MATERIAL BEHAVIOR
INTO THREE TYPES: SOLIDS, LIQUIDS AND
YIELD STRESS FLUIDS

In this work the definitions of solids, liquids and yield
stress fluids are formulated related to the mechanical
point of view of phenomenological modeling depending
on two classification criteria, the equilibrium relation
according to relaxation and the flow function.

Solid-like material or a solid is denoted as material,
which has a non-zero equilibrium relation. The limit val-
ue t¥of the stress response related to a loading with con-
stant strain rate following Equation 2 does not exist so
that the flow function is not defined (Definition D1).

The non-existent flow function is clear, since an
increase of the strain by Dg is connected with an increase
of the stress by Dt�in case of ideal solids without dam-
age and fracture effects. That is why a constant strain
rate results into a continuous increase of the stress so
that no limit value t¥ can be reached. Furthermore, it
does not matter if an equilibrium relation is determined
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Figure 3: Difference between the dynamic and differential vis-
cosity and equality between the differential viscosity and the
coefficient of the linear term of the Taylor series which
defines the slope of the flow function.



by creep or by relaxation. In both cases a non-zero equi-
librium relation is found which is an observation of the-
oretical studies with a variety of material models but do
not follow from a rigorous mathematical proof. For a
detailed demonstration, an ideal viscoplastic material
model is presented in Section 5.4.1.

Liquid-like material or a fluid is defined as material
for which the limit value t¥ and thus the flow function
are well defined. The equilibrium relation determined by
relaxation is zero (Definition D2).

The determination of the equilibrium relation by
creep is theoretically not possible for fluids because no
state of standstill can be reached. A constant stress
forces a fluid to flow indefinitely so that it cannot reach
a time-constant strain. For practical reasons during a
creep measurement the question: “Perhaps is there a
time-constant strain if the time of observation Dt is
increased?” would always remain as long as no time-
constant strain is reached. To illustrate the working
principle of the new material classification for fluids,
the Maxwell element as an example of a viscoelastic
fluid is discussed in Section 5.4.2.

For yield stress fluids [26 – 33] or materials with sol-
id-liquid transition [28, 30, 34, 35], the equilibrium rela-
tion determined by relaxation is non-zero. The limit val-
ue t¥ and thus the flow function are well defined
(Definition D3).

In contrast to solids, the investigation of an equilib-
rium point related to relaxation and creep in case of yield
stress fluids may differ from each other but do not have
to. Relaxation as well as creep identify the same equilib-
rium relation only in the preyield. In the postyield, yield
stress fluids flow indefinitely related to creep. Thus, no
state of standstill appears and no equilibrium relation
can be identified. It is measured only by relaxation. In Sec-
tion 5.4.3 the working principle of the new material clas-
sification is shown for a viscoplastic yield stress fluid.

For a better overview the three classes are ordered
in Table 1. The remaining case of a zero equilibrium rela-
tion and a non-existent flow function is purely theoret-
ical due to combinatorics. Because it has no practical rel-
evance it is not being considered here in any way. The
Definitions D1, D2, and D3 are practicable to classify one-
dimensional operators so that one is able to choose a
material model according to the classification. They are
based on qualitative considerations related to the
mechanical point of view of phenomenological model-
ing. However, these definitions leave the classification
of generalised, three-dimensional material models open
in some cases. Imagine for example an anisotropic mate-

rial which behaves in one direction as fluid and in an oth-
er direction as solid. These material classification is ap -
plied to standard rheological elements, the Kelvin-Voigt,
friction and Bingham element, for demonstration in Sec-
tion 5.3.

5 DISCUSSION OF THE DIFFERENTIAL
VISCOSITY AND DEMONSTRATION OF
THE FUNCTIONALITY OF THE MATERIAL
CLASSIFICATION BY STANDARD AND
EXTENDED RHEOLOGICAL ELEMENTS

In the following the theoretical founded statements of
this work are practically illustrated by their application
to standard and extended rheological elements. First of
all, the constitutive equations of the standard rheolog-
ical elements are given in Section 5.1. Then, the benefit
of defining a differential viscosity instead of a dynam-
ic viscosity in case of yield stress fluids is shown in Sec-
tion 5.2. The dynamic viscosity is only equal to the dif-
ferential viscosity in the special case of Newtonian
fluids (S3) and viscoelastic fluids [6] with linear viscous
properties (S4). Finally, the functionality of the new
material classification of Section 4 is described for stan-
dard rheological elments in Section 5.3 and is demon-
strated for extended rheological elments in Section 5.4
by means of the investigation of the equilibrium rela-
tion (Section 2) and the flow function (Section 3).

5.1 CONSTITUTIVE EQUATIONS OF STANDARD
RHEOLOGICAL ELEMENTS USED TO ILLUSTRATE THE
THEORETICAL STATEMENTS OF THIS ARTICLE

The previously presented theory is illustrated in the next
two sections with the help of standard rheological ele-
ments, the Kelvin-Voigt (Figure 4a), friction (Figure 4b),
and Bingham element (Figure 4c). Thus, their constitu-
tive equations are briefly summarised in this section. The
one of the Kelvin-Voigt element yields [5, 6, 36]

(8)

The constitutive equations of a single friction element
have not often been discussed in literature. However,
for this work it is inevitably necessary to investigate
them, because the friction element is the basis of the
yield stress concept [37 – 39]. Due to the lack of this
investigation, the material equations of rheological ele-
ments which partially consist of a friction element are
only valid for positive strain rates and are not able to
ensure the equilibrium in the preyield. An example is
given by the common definition of the stress of the
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Table 1: Three classes of material behavior depening on two
classification criteria, the flow function and the equilibrium
relation according to relaxation.

      Equilibrium relation according to relaxation
     zero    non-zero

Flow            existent   fluids    yield stress fluids
function        non-existent   –    solids



Bingham element t= ty + hg· . Here, the stress of the fric-
tion element is given indirectly by t = ty which is only
true for g· > 0 but not for g· ≤ 0. To eliminate these dis-
advantages, the stress which acts on the friction ele-
ment is given by

(9)

The function ~sign is related to the signum function of 

Equation 12 and is defined here as
(10)

The definition ~sign(0) = x is chosen in contrast to the
ordinary definition sign(0) = 0 of Equation 12 to take −ty
< tf < ty into account if g· f = 0. In this sense the variable
x is determined by the equilibrium so that also the
material behavior in case of no plastic flow can be
expressed. Thus, x lies in the interval −1 < x < 1. Because
the inverse of ~sign is not a function, a closed relation
g· f(tf) cannot be expressed. But it can be stated that

(11)

with the ordinary defined signum function

(12)

It implies that
(13)

The description of the constitutive equations in the
sense of the classical theory of plasticity [6] with F(tf) =
|tf| − ty (Equation A.1) is presented in Supplemental
Information A, so that the terms ‘preyield’ and ‘post -
yield’ can be defined in case of the friction element by
Equations A.11 which yield

(F < 0) Ú [(F = 0) Ù (F· < 0)]: preyield
(F = 0) Ù [(F· = 0) Ù (z > 0)]: postyield

The Bingham model is the most commonly used mod-
el in cement and concrete technology [40]. The consti-
tutive equations of the Bingham element [32] follow in
analogy to the one of the friction element. The stress
equals

(14)

Since Equation 14 gives g· b = 0 for tb =tf.b, no evolution
of gb occurs if the absolute value of the applied stress
|tb| is less than or equal the yield stress. That is why the
friction element has to be described by  -sign instead of
~sign with

(15)

According to the friction element also the variable x– is
determined by the equilibrium but lies in the interval
−1 ≤ x

–
≤ 1. The evolution of the strain rate depending

on the stress is given by [41]

(16)

The interpretation of the Bingham element as Perzyna
type element [6, 41, 42] in analogy to the classical the-
ory of viscoplasticity [6] leads to the description of

(17)

in case of the Bingham element.
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Figure 4: Defining stresses, strains and material parameters of the (a) Kelvin-Voigt, (b) friction, and (c) Bingham element used
to illustrate the theoretical statements of this article.

(a) (b) (c)



5.2 ILLUSTRATING THE BENEFIT OF A DIFFERENTIAL
VISCOSITY BY STANDARD RHEOLOGICAL ELMENTS

In this section the advantage of the differential viscos-
ity (Section 3) in case of yield stress fluids is demon-
strated. It is also shown that the differential viscosity
gives the same results as the dynamic viscosity for New-
tonian fluids and viscoelastic fluids [6] with linear vis-
cous properties. Therefore, the flow function is evalu-
ated so that the dynamic (Equation 4) and differential
viscosity (Equation 6) can be determined. In case of the
Kelvin-Voigt element, the flow function does not exist
so that neither the dynamic nor the differential viscos-
ity are defined. The flow function of the friction element
exists and results into tf.¥ = ty

~sign(g·~f). Thus, its differ-
ential viscosity is given by

(18)

according to Equation 6 with d~sign(g·~f)/dg· f = 2d(g·~f) and
satisfies the condition of an even function (Equation 3).
It is plotted in Figure 5. Here d(g·~f) represents the Dirac
delta function. The viscosity equals zero for all non-zero
strain rates. This result is mandatory because the vis-
cosity is a material parameter which is connected to
rate-dependent behavior [6, 17, 18], which is not the case
for the friction element. In contrast to this, the dynam-
ic viscosity of the friction element hf.dyn (Figure 5) attrib-
utes shear thinning behavior [9, 43 - 46] because it only
tends to zero for |g·~f| →¥. Here the deficit of the dynam-
ic viscosity is obvious. Therefore, the viscosity is defined
as differential viscosity for all non-Newtonian fluids.
The same consequence occurs if one considers the Bing-
ham element. The differential viscosity is given by

(19)

Thus, its plot and the one of the dynamic viscosity is
only shifted by h so that they are qualitatively identical
to Figure 5. As for the friction element, the yield stress
fluid character of the Bingham element can only be
revealed if the differential viscosity is used.

5.3 APPLICATION OF THE MATERIAL CLASSIFICATION
TO STANDARD RHEOLOGICAL ELEMENTS

In the following, the working principle of the material
classification (Section 4) is explained. Therefore, the
equilibrium relation (Section 2) and the flow function
(Section 3) have to be determined. As required, the new
material classification matches the literature in case of
the Kelvin-Voigt element. Beside the non-existent flow
function, relaxation and creep lead to non-zero equilib-
rium relations tkv

eq ≡ ts.kv so that the Kelvin-Voigt ele-
ment is considered as a solid. To determine the equilib-
rium relation of the friction element, first the relaxation
behavior is investigated. Following Equation 10b, the
stress is not uniquely defined for gf = const. If the load-
ing of a friction element is changed from a stress con-
trolled one to relaxation, tf equals the stress which was
present directly before relaxation was applied so that
this stress defines the equilibrium stress tf

eq≡tf . An equi-
librium relation can be also identified for creep loading
with |tf | < ty . In case of a creep load with |tf | = ty the fric-
tion element flows and no equilibrium relation can be
found. But if relaxation is applied, the stress |tf | = ty is
identified as equilibrium stress. This discussion explains
the statements (S1) and (S2). Be cause both, an equilibri-
um relation as well as the flow function are well defined,
the friction element is classified as yield stress fluid.

For the Bingham element the investigation of the
equilibrium relation is qualitatively the same to that of
the friction element. For creep loading with |tb | ≤ ty an
equilibrium relation is found. The Bingham element
flows in case of a creep load with |tf | > ty so that no equi-
librium relation can be identified. But if relaxation is
applied, the stress in the Newtonian dashpot relaxes

© Appl. Rheol. 24 (2014) 14578 |   DOI: 10.3933/ApplRheol-24-14578 |   6 |

Figure 5: Differential and dynamic viscosity of the friction ele-
ment.

Figure 6: Example of an ideal solid (a) whose flow function is
not defined (b).

(a)

(b)



instantaneously and the stress in the friction element
remains analog to the discussion above. Thus, the equi-
librium is given by tb

eq ≡ tf.b . Due to the existing flow
function, the new material classification classifies the
Bingham element as yield stress fluid as normal.

5.4 APPLICATION OF THE MATERIAL CLASSIFICATION
TO EXTENDED RHEOLOGICAL ELEMENTS

In this section, the response of one extended rheologi-
cal element of each material class is calculated to vali-
date the working principle of the new material classifi-
cation in much more detail. Therefor, first the flow
function is plotted. Second, the determination of the
equilibrium relation is discussed due to relaxation as
well as creep. The corresponding analytically calculat-
ed equations are given in Supplemental Information B.

5.4.1 Classification of a viscoplastic rheological element
as solids
To illustrate a classification into the class of solids, an
ideal viscoplastic material model with linear kinemat-

ic hardening due to the backstress tback [6, 42, 47, 48]
according to Figure 6a is considered. The correspond-
ing one-dimensional constitutive equations are briefly
summarised in Supplemental Information B.1. Its non-
defined flow function is signed in Figure 6b. The stress
response t(g) as a result of a cyclic strain controlled
loading (Figure 2a with b = g) as well as the corre-
sponding equilibrium relation t eq(g) due to relaxation
(Figure 1 with b = g) are plotted in Figure 7a. The strain
response g(t) related to a cyclic stress controlled load-
ing (Figure 2a with b = t) as well as the resultant equi-
librium relation geq (t) due to creep (Figure 1 with b = t)
are given in Figure 7b. The corresponding analytical
solutions are documented in Supplemental Informa-
tion B.2 and B.3. In both cases, either relaxation or creep,
an equilibrium relation can be observed which is illus-
trated by the arrows in Figure 7. Because of an existent
flow function and a non-zero equilibrium relation
according to relaxation the material behavior of the
one-dimensional rheological element in Figure 6a is
classified as solid-like.

5.4.2 Classification of the Maxwell element as fluid
The classification of the Maxwell element (Figure 8a)
into the class of fluids is demonstrated in the follow-
ing. Its well defined flow function is given in Figure 8b.
For testing that the flow function is an odd function
[49 – 52]

(20)

it is plotted for positive and negative strain rates. Fig-
ure 9a includes the stress response t(g) to a cyclic strain
controlled loading related to Figure 2a with b = g. Fur-
thermore, the corresponding zero equilibrium relation
teq(g) = 0 due to relaxation according to Figure 1 with
b= g is plotted. The strain response g(t) to a cyclic stress
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Figure 7: Investigation of the existence of an equilibrium rela-
tion for an ideal viscoplastic solid with G = 1 Pa, h = 0.5 Pas,
G1 = 1 Pa, G2 = 0.5 Pa, ty = 0.5 Pa, T = 1 s, ĝ = 1 (a) and t̂ = 1 Pa
(b): Total stress t(g) and equilibrium stress teq(g) of the ideal
viscoplastic solid of Figure 6a according to cyclic strain con-
trolled loading g(t) (colored arrows indicate the relaxation of
the overstress), (b) Total strain g(t) and equilibrium strain
g eq (t) of the ideal viscoplastic solid of Figure 6a according to
cyclic stress controlled loading t(t) (colored arrows indicate
the redistribution of the total stress). |tov| decreases, |teq|
increases as long as t= teq and tov = 0.

Figure 8: Example of a fluid (a) whose flow function is well
defined (b).

(a)

(a)

(b)

(b)



controlled loading, defined by Figure 2a with b = t, is
given in Figure 9b. Independent of at which point of the
strain response [g(t);t] a creep process is started, the
strain never reaches a timeconstant value. In case of a
starting point with t < 0, the strain tends to g → −¥,
otherwise it goes to g → ¥. The analytical solution of
the total stress response as result of cyclic strain con-
trolled loading is identical with the overstress in Sup-
plemental Information B.2 because the equilibrium
stress of a Maxwell element is zero. The analytical solu-
tion for the strain response to a cyclic stress controlled
loading is determined as solution of the differential
equation [5, 6, 36, 43]

(21)

and is documented in Supplemental Information B.4.
Because of an existent flow function and a zero equi-
librium relation according to relaxation the material
behavior of the one-dimensional rheological element
in Figure 8a is classified as fluid-like.

5.4.3 Classification of a viscoplastic rheological element
as yield stress fluid
To demonstrate the behavior of yield stress fluids, a vis-
coplastic material according to Figure 10a is considered.
The one-dimensional constitutive equations are briefly
summarised in Supplemental Information B.5. Its flow
function (Figure 10b) is well defined and equals the one
of a Bingham element. The stress response t(g) accord-
ing to cyclic strain controlled loading (Figure 2a with
b=g) as well as the corresponding equilibrium relation
t eq(g) due to relaxation (Figure 1 with b = g) are plotted
in Figure 11a. The strain response g(t) related to a cyclic
stress controlled loading (Figure 2a with b = t) is given
in Figure 11b. The corresponding equilibrium relation
g eq (t) due to creep (Figure 1 with b = t) is not unique,
because the plastic strain gpl strongly depends on the
history of the entire creep process. If the condition for
viscoplastic loading (Equation B.71) is fulfilled, the yield
stress fluid of Figure 10a behaves in the postyield (Equa-
tion A.11b) and flows so that gpl changes as long as the
condition of viscoelastic unloading (Equation B.69) is
met again. That is why the equilibrium strain in Figure
11b can be uniquely determined only in the first preyield
(see arrows in Figure) but not for the overall process. If
creep is applied in the postyield at a point of the strain
response [g(t);t], the strain tends to infinity for infinite
holding times. The analytical solution of the total stress
response and the equilibrium stress response as result
of cyclic strain controlled loading are identical with the
ones of Supplemental Information B.2 with respect to
G2 = 0. The analytical solution of the strain response is
documented in Supplemental Information B.6. Because
of an existent flow function and a non-zero equilibri-
um relation according to relaxation the one-dimen-
sional rheological element in Figure 8a is a yield stress
fluid.
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Figure 9: Investigation of the existence of an equilibrium rela-
tion for a viscoelastic fluid with G = 1 Pa, h = 0.5 Pas, T = 1 s,
ĝ= 1 (a) and t̂ = 1 Pa (b): (a) Total stress t(g) and equilibrium
stress teq(g) of the viscoelastic fluid of Figure 8a according to
cyclic strain controlled loading g(t) (colored arrows indicate
the relaxation of the overstress to zero), (b) Total strain g(t) of
the viscoelastic fluid of Figure 8b according to cyclic stress
controlled loading t(t), equilibrium strain geq(t) is not defined
(colored arrows indicate the unlimited increase of g for infi-
nite holding times because t = tov " t.

Figure 10: Example of a yield stress fluid (a) whose flow func-
tion is well defined (b).

(a)

(b)

(a)

(b)



6 SUMMARY AND CONCLUSION

This work is a contribution to aspects of yield stress flu-
ids in the sense of phenomenological modeling. It intro-
duced a terminology to define the three types of mate-
rials, ‘solid’, ‘liquid’, and ‘yield stress fluid’, and the
terms ‘preyield’ and ‘postyield’. In this context a proce-
dure was presented so that one can determine the class
of a material behavior. Furthermore, the use of the dif-
ferential viscosity instead of the dynamic viscosity was
highlighted. The theory was proved by standard as well
as extended rheological elements in Section 5. Here, a
great emphasise was placed on the friction element
since it is the basis of the yield stress concept.

The physical interpretation of viscosity was theo-
retically discussed in Section 3 for non-Newtonian flu-
ids and was investigated by standard rheological ele-
ments in Section 5.2. Their constitutive equations were
evaluated for constant positive and negative strain
rates. The question: ”Does it makes sense, that the sin-

gle friction element is connected with viscous proper-
ties?” directly led to the deficit of the dynamic viscosi-
ty in case of yield stress fluids. Because the dynamic vis-
cosity is just the secant between a point on the flow
function and the origin, it has no physical meaning for
strongly non-linear fluids. For non-Newtonian fluids
the application of the differential viscosity is advisable
since it is defined as the tangent to the flow function.

To ensure a coherent concept of material classifi-
cation, Section 4 was devoted to the general questions:
”What is a convenient definition of the term yield stress
fluid in the sense of phenomenological modeling? How
can it be distinguished from solids and liquids?” Here,
three types of material behavior were classified by the
equilibrium relation, introduced in Section 2, and the
flow function (Section 3). The measuring of the flow
function is clear, of course. But how is it possible to mea-
sure the equilibrium relation of yield stress fluids? In
this sense, the determination of the equilibrium rela-
tion was considered related to relaxation and creep. The
uniqueness between relaxation and creep is not given
for all theoretically possible materials. Examples were
given by the friction and Bingham element in Section
5.3, the Maxwell element (Section 5.4.2) as well as the
viscoplastic yield stress fluid in Section 5.4.3. In case of
fluids, one cannot determine the zero equilibrium rela-
tion by creep, because the material flows indefinitely.
But it is possible to identify the zero equilibrium rela-
tion by relaxation. The determination of the equilibri-
um relation by creep and relaxation only gives the same
result for solids. For yield stress fluids the identification
of the equilibrium relation according to relaxation and
creep is only possible in the preyield. In the postyield
regime yield stress fluids flow indefinitely for infinite
holding times so that no equilibrium relation can be
identified by creep. It can be determined only through
relaxation. The corresponding measurement proce-
dure was given in Figure 1 with b = g. By the application
of the new material classification to standard and
extended rheological elements in Sections 5.3 and 5.4,
the working principle was verified because it produced
the expected statements of literature for classical solids
and liquids and dispeled ambiguity for yield stress flu-
ids like it is denoted by Reiner [53].

As it is mentioned above, the investigation of the
friction element was inevitably necessary for this work.
Therefore, the first part of the constitutive equations of
the friction element are worked out in Section 5.1, being
valid for the preyield as well as the postyield with respect
to positive and negative strain rates. This could be
ensured by the introduction of a signum related func-
tion.

The second part of the constitutive equations of
the friction element was presented in Supplemental
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Figure 11: Investigation of the existence of an equilibrium
relation for a viscoplastic yield stress fluid with G = 1 Pa, h =
0.5 Pas, G1 = 1 Pa, ty = 0.5 Pa, T = 1 s, ĝ = 1 (a) and t̂ = 1 Pa (b):
(a) Total stress t(g) and equilibrium stress teq(g) of the vis-
coplastic yield stress fluid of Figure 10a according to cyclic
strain controlled loading g(t) (colored arrows indicate the
relaxation of the overstress, (b) Total strain g(t) of the vis-
coplastic yield stress fluid of Figure 10a according to cyclic
stress controlled loading t(t), equilibrium strain geq(t) is not
uniquely defined for the overall process (blue arrow indicates
the redistribution of the total stress as long as t = teq and tov
= 0, Green and red arrow indicate the unlimited increase of g
for infinite holding times because |tov| > 0).

(a)

(b)



Information A and included the description in terms of
the classical theory of plasticity. As consequence, the
terms ‘preyield’ and ‘postyield’ were defined for the
friction element by the loading and unloading condi-
tions which in turn are connected with the Karush-
Kuhn-Tucker and consistency conditions. In this work
the latter two were illustrated in a convenient way by
the evaluation of logical expressions in Supplemental
Informationg A.1 and A.2 without considering the opti-
misation problem with constraints in form of inequal-
ities.
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Supplemental information


To define the termspreyieldandpostyieldin case of the friction element, the description of its constitutive
equations by classical theories are productive. The constitutive equations of the friction element are given
with respect to the classical theory of plasticity [6, p. 227] in supplemental informationA because a
similar representation is not known to the authors of this work. In this sense they are defined by the yield
function, an associated flow rule, the KARUSH-KUHN-TUCKER- and consistency conditions. The latter
two are derived from an optimisation with constraints in form of inequalities ([42, p. 6], [54]). However, in
this work they are illustrated more practically by a descriptive way of logical statements and calculations
with respect to the physical nature of the friction element in supplemental informationA.1 andA.2. This
enable a convenient reconstruction of the KARUSH-KUHN-TUCKER- and consistency conditions without
discussing an optimisation with constraints in form of inequalities.


In supplemental informationB the analytical descriptions of the stress and strain responses accord-
ing to cyclic loadings are documented. These are the basis ofthe figures7(a), 7(b), 9(a), 9(b), 11(a)
and11(b) which are plotted in section5.4 to demonstrate the definitions of the three classes of material
behavioursolid, fluid and yield stress fluid. They were checked and validated with the finite element
method by Marc/Mentat of MSC Software Corporation.


A Constitutive equations of the friction element in terms ofthe clas-
sical theory of plasticity


In the following, the friction element is described in termsof the classical theory of plasticity [6, p. 227].
First theyield function


F (τf) = |τf |− τy (A.1)


is defined without consideration of hardening or softening effects.


F (τf) = 0 (A.2)


is the necessary condition of plastic flow and is referred asyield condition([6, p. 228, 232], [42, p. 4]). The
condition


F (τf)≤ 0 (A.3)


defines feasible stress states. The temporal change of the strain is given by theassociated flow rule


γ̇f = ζ
∂F
∂τf


. (A.4)


Theproportionality factorζ is by definition
ζ ≥ 0. (A.5)


As it can be seen in equation (A.4), ζ > 0 is necessary and sufficient for plastic flow. (S5)


Due to equations (A.3) and (A.4) the values ofF (τf) and ζ express kinetic and kinematic condi-
tions of the friction element. Thus, they are not independent from each other. Depending on which of them,
F (τf) or ζ , is the starting point of a logical discussion the four casesof table2 exist. Examples for each of


Table 2: Four logical statements betweenF (τf) andζ
➀ : IF ζ = 0 THEN


{(
F = 0


)
OR


(
F < 0


)}


➁ : IF ζ > 0 THEN F = 0
➂ : IF F = 0 THEN


{(
ζ = 0


)
OR


(
ζ > 0


)}


➃ : IF F < 0 THEN ζ = 0


1







the four cases are specified in supplemental informationA.1. Equations (A.14), (A.16), (A.18) and (A.19)
hold the information of the four statements of table2 in the logical notation and can be summarised by


ζ F (τf) = 0. (A.6)


Equations (A.3), (A.5) and (A.6) are called KARUSH-KUHN-TUCKER conditions([41, p. 123], [55]) and
comming from convex non-linear programming ([42, p. 6], [54]). But due to case➂ of table2 it is not
possible to decide wetherζ is equal or greater than zero. To solve itḞ (τf) is considered. Under the
assumption ofF (τf) = 0 it is necessary to keep


Ḟ (τf)≤ 0 (A.7)


to satisfy equation (A.3). Furthermore, it is imperative to connectḞ (τf) = 0 with plastic flow so that its
necessary condition, equation (A.2), can be satisfied during the whole time of the plastic flow process. With
respect to statement (S5) the four cases of table3 exist, depending on which of the logical statements,Ḟ (τf)
or ζ , is the starting point of the logical discussion.


Table 3: Four logical statements betweenḞ (τf) andζ
➀ : IF ζ > 0 THEN


{(
F = 0


)
AND


(
Ḟ = 0


)}


➁ : IF
{(


F = 0
)


AND
(
Ḟ = 0


)}
THEN ζ > 0


➂ : IF
{(


F = 0
)


AND
(
ζ = 0


)}
THEN


{(
F = 0


)
AND


(
Ḟ < 0


)}


➃ : IF
{(


F = 0
)


AND
(
Ḟ < 0


)}
THEN


{(
F = 0


)
AND


(
ζ = 0


)}
.


The logical evaluation as well as examples are considered indetail in supplemental informationA.2. Thus,
the information of the four statements in table3 can be summarised in theconsistency condition([6, p. 235,
461], [18, p. 200], [42, p. 6, 77], [56, p. 193])


ζ Ḟ (τf) = 0 if F (τf) = 0. (A.8)


With the help of the KARUSH-KUHN-TUCKER and consistency condition theloading and unloading con-
ditions([42, p. 78], [56, p. 189])


(F < 0) ⇒ (ζ = 0) rigid (A.9)


(F = 0)∧







[
(Ḟ < 0)⇒ (ζ = 0)


]
rigid unloading (A.10a)[


(Ḟ = 0)∧ (ζ = 0)
]


neutral loading (A.10b)[
(Ḟ = 0)∧ (ζ > 0)


]
plastic loading. (A.10c)


are expressed. They provide the definition of thepreyield, the region of no plastic flow, and thepostyieldat
which the friction element flows plastically. Thus, the pre-and postyield are separated by


(F < 0)∨
[
(F = 0)∧ (Ḟ < 0)


]
: preyield (A.11a)


(F = 0)∧
[
(Ḟ = 0)∧ (ζ > 0)


]
: postyield. (A.11b)


ζ can be calculated by the evaluation of the consistency condition with respect to equation (A.4), which
yieldsζ = γ̇f sign(τf) under consideration of∂F


∂τf
= sign(τf). With sign(γ̇f) = sign(τf) according to equation


(11) the proportionality factor is calculated to


ζ = |γ̇f | . (A.12)


A.1 Explaining the third K ARUSH-K UHN-TUCKER condition related to table2


In this section the four cases of table2 are illustrated. To verify this some examples are discussed. First the
written logical statements of table2 shall be expressed with logical symbols. Thereto OR is replaced by∨.
The IF A THEN B construction which leads to the logical terms Asufficientfor B and Bnecessaryfor A is
substituted by⇒. With it the truth table for case➀ and➂ can be formulated and is plotted in table4. Here
A, B and C are logical variables. Depending on the case they are


➀ : A = (ζ = 0), B = (F = 0), C= (F < 0) (A.13a)


➂ : A = (F = 0), B = (ζ = 0), C= (ζ > 0). (A.13b)
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Table 4: Truth table for case➀ and➂
(A ⇒ B)∨ A⇒A B C B∨C A⇒B A⇒C
(A ⇒ C) (B∨C)


1 0 1 1 0 1 1 1


1 0 0 0 0 0 0 0


1 1 1 1 1 1 1 1


1 1 0 1 1 0 1 1


0 0 1 1 1 1 1 1


0 0 0 0 1 1 1 1


0 1 1 1 1 1 1 1


0 1 0 1 1 1 1 1


The start of the discussion of case➀ is given by the logical eventζ = 0. Here both events, eitherF = 0 or
F < 0, are possible and are linked by an OR operation related to the prosaic statement of table2. Thus, the
column B and C are linked by the OR operator∨ and define column four. Because the truth table given by
column two to four at line one to four is similar to the truth table given by column five to seven at line one
to four the logical statement


{(
ζ = 0


)
⇒


[(
F = 0


)
∨
(
F < 0


)]}
=
{[(


ζ = 0
)
⇒


(
F = 0


)]
∨
[(


ζ = 0
)
⇒


(
F < 0


)]}
(A.14)


is verified. An example to demonstrate case➀ is given by the stress driven sinusoidal loadingτf = τy sin(ωt)
so that it yields


τf =







−τy : t = 1
ω
(


3π
2 +n2π


)
(A.15a)


−τy < τf < τy :
[
t ≥ 0


]
�


[
t = 1


ω
(π


2 +nπ
)]


(A.15b)


τy : t = 1
ω
(π


2 +n2π
)
. (A.15c)


� describes the difference of sets so that
[
t ≥ 0


]
�


[
t = 1


ω
(π


2 +nπ
)]


defines all times greater equal zero
without the timest = 1


ω
(π


2 +nπ
)
. At the reversal points to the timest = 1


ω
(π


2 +nπ
)


the stress starts to


decrease so that the loading passes under the assumption of neutral loading withγ̇f


(
t = 1


ω
(π


2 +nπ
))


= 0.


Thus, it is clear that
(
ζ = 0


)
∧
(
F = 0


)
on the reversal points and otherwise it yields


(
ζ = 0


)
∧
(
F < 0


)
.


Here the operator∧ stands for the logical AND operator.
In case➂ the starting point of the argumentation isF = 0. Hereζ cannot be restricted. Thus, both events,
eitherζ = 0 or ζ > 0, are still possible. Relating to a discussion analog to case ➀ (see above) the logical
statement


{(
F = 0


)
⇒


[(
ζ = 0


)
∨
(
ζ > 0


)]}
=
{[(


F = 0
)
⇒


(
ζ = 0


)]
∨
[(


F = 0
)
⇒


(
ζ > 0


)]}
. (A.16)


holds true. An example of
(
F = 0


)
∧
(
ζ = 0


)
is given by the neutral loading conditions at the reversal


points due to equation (A.15) with γ̇f


(
t = 1


ω
(π


2 +nπ
))


= 0. If the friction element undertake plastic flow


for example with a non-zero constant strain rateγ̇f 6= 0 it yields
(
F = 0


)
∧
(
ζ > 0


)
.


For case➁ and➃ the logical variables are linked by A⇒ B (table4) and associated with the statements


➁ : A = (ζ > 0), B = (F = 0) (A.17a)


➃ : A = (F < 0), B = (ζ = 0). (A.17b)


In case➁ the discussion is started withζ > 0. It follows F = 0 and it yields


(ζ > 0)⇒ (F = 0). (A.18)


Hereζ > 0 is sufficient forF = 0 which means thatF = 0 is necessary forζ > 0. This is the case if the
friction element flows (plastic flow).
F < 0 is the start of the argumentation of case➃ so thatζ = 0 follows. Thus,


(F < 0)⇒ (ζ = 0) (A.19)


is valid. F < 0 is sufficient forζ = 0 andζ = 0 is necessary forF < 0.
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A.2 Illustration of the consistency condition related to table 3


In this section the logical correlation betweenḞ andζ are discussed under the assumption ofF = 0. Thereto
the logical statements of table3 are expressed with placeholders by


➀,➁ : A = (ζ > 0), B =
{(


F = 0
)
∧
(
Ḟ = 0


)}
(A.20a)


➂,➃ : A =
{(


F = 0
)
∧
(
ζ = 0


)}
, B =


{(
F = 0


)
∧
(
Ḟ < 0


)}
. (A.20b)


In the following, statement➀ and➁ shall be evaluated. Therefore the Aif and only if B construction is


Table 5: Truth table from case➀ to ➃
A B A⇒B B⇒A (A ⇒ B)∧ (B ⇒ A) A⇔B
1 1 1 1 1 1


1 0 0 1 0 0


0 1 1 0 0 0


0 0 1 1 1 1


substituted by⇔. First the prosaic statement➀ is expressed by its logical symbols and define column three
of table5. The prosaic statement➁ of table3 gives column four of table5. Because column five is similar
to column six the logical statement


(ζ > 0)⇔
{(


F = 0
)
∧
(
Ḟ = 0


)}
(A.21)


holds true. This means that(ζ > 0) if and only if
{(


F = 0
)
∧
(
Ḟ = 0


)}
. Both logical statements are valid


if the friction element is in plastic flow.
The statments➂ and➃ are discussed in the same way and one obtains


{(
F = 0


)
∧
(
ζ = 0


)}
⇔


{(
F = 0


)
∧
(
Ḟ < 0


)}
. (A.22)


Analog to the discussion above
{(


F = 0
)
∧
(
ζ = 0


)}
if and only if


{(
F = 0


)
∧
(
Ḟ < 0


)}
. An example of


this case is the neutral loading at the reversal points of equation (A.15) with γ̇f


(
t = 1


ω
(π


2 +nπ
))


= 0.
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B Analytical calculations to explain the definitions ofsolid, fluid and
yield stress fluid


B.1 One-dimensional constitutive equations of the material model of figure 6(a)


In the following the one-dimensional constitutive equations of a viscoplastic material according to figure
6(a)is briefly summarised.


kinetic condition: τ = τov+ τeq (B.1)


kinematic condition: γ = γel1+ γv = γel2+ γpl (B.2)


overstress: τov = Gγel1 = η γ̇v (B.3)


equilibrium stress: τeq= G1 γel2 = τback+ τf (B.4)


backstress: τback= G2 γpl (B.5)


stress of the friction element: τf = sign(γ̇pl)τy (B.6)


yield function: F = |τeq− τback|− τy (B.7)


associated flow rule: γ̇pl = ζ
∂F(τeq,τback)


∂τeq = ζ sign(τeq− τback) (B.8)


KARUSH-KUHN-TUCKER conditions: F(τeq
,τback)≤ 0 (B.9)


ζ ≥ 0 (B.10)


ζ F(τeq
,τback) = 0 (B.11)


consistency condition: ζ Ḟ(τeq
,τback) = 0 if: F(τeq


,τback) = 0 (B.12)


loading and unloading conditions:


(F < 0) ⇒ (ζ = 0) . . . viscoelastic behaviour (B.13)


(F = 0) ∧
[
(Ḟ < 0)⇒ (ζ = 0)


]
. . . viscoelastic unloading (B.14)


(F = 0) ∧
[
(Ḟ = 0)∧ (ζ = 0)


]
. . . neutral loading (B.15)


(F = 0) ∧
[
(Ḟ = 0)∧ (ζ > 0)


]
. . . viscoplastic loading (B.16)


The proportionality factorζ is determined bẏF(τeq
,τback) = 0 and yields


ζ =
sign(τeq− τback)G1 γ̇


G1+G2
=


sign(τeq− τback) τ̇eq


G2
. (B.17)


B.2 Total stress response and equilibrium stress response of the material model of
figure 6(a)according to cyclic strain controlled loading


The stress response in case of cyclic strain controlled loading can be calculated separately for the overstress
and equilibrium stress since they are additively connecteddue to equation (B.1). The overstress is calculated
by solving the differential equation (21). The equilibrium stress


τeq= G1
(
γ − γpl


)
(B.18)


is given by equations (B.2) and (B.4). At viscoplastic loading, the plastic strain is related tothe total strain
by equations (B.8) and (B.17) and results into


viscoplastic loading: γpl =
G1


G1+G2
γ +C . (B.19)


The constant of integrationC is determined by the transition condition which ensure the continuity of γpl


during the whole loading.
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The solution for the overstress response is given by


0≤ t ≤ T : τov(t) =
γ̂
T


η
(
+1−e−


G
η t
)


(B.20)


T ≤ t ≤ 3T : τov(t) =
γ̂
T


η
(
−1−e−


G
η t +2e−


G
η (t−T)


)
(B.21)


3T ≤ t ≤ 5T : τov(t) =
γ̂
T


η
(
+1−e−


G
η t +2e−


G
η (t−T)−2e−


G
η (t−3T)


)
(B.22)


The equilibrium stress response yields


0≤ t ≤
τyT


G1γ̂
: τeq(t) = G1


γ̂
T


t (B.23)


τyT


G1γ̂
≤ t ≤ T : τeq(t) = G1


[
+


γ̂
T


t


(
1−


G1


G1+G2


)
+


τy


G1+G2


]
(B.24)


T ≤ t ≤ T


(
1+


2τy


G1γ̂


)
: τeq(t) = G1


(
−


γ̂
T


t +2γ̂ −
G1γ̂ − τy


G1+G2


)
(B.25)


T


(
1+


2τy


G1γ̂


)
≤ t ≤ 3T : τeq(t) = G1


[(
−


γ̂
T


t +2γ̂
)(


1−
G1


G1+G2


)
−


τy


G1+G2


]
(B.26)


3T ≤ t ≤ T


(
3+


2τy


G1γ̂


)
: τeq(t) = G1


(
+


γ̂
T


t −4γ̂ +
G1γ̂ − τy


G1+G2


)
(B.27)


T


(
3+


2τy


G1γ̂


)
≤ t ≤ 5T : τeq(t) = G1


[(
+


γ̂
T


t −4γ̂
)(


1−
G1


G1+G2


)
+


τy


G1+G2


]
(B.28)


The sum of both stresses results into the total stress which is plotted in figure7(a)as parameter-dependent
set of[γ(t); τ(t) = τov(t)+ τeq(t)] with the timet as parameter. The same holds for the equilibrium relation
[γ(t); τeq(t)].


B.3 Total strain response and equilibrium strain response of the material model of
figure 6(a)according to cyclic stress controlled loading


To determine the strain response in case of cyclic stress controlled loading, the overstress part and equilib-
rium stress part of the material model cannot be solved separately. Since they are additively connected due
to equation (B.1) the split of the applied total stress into the overstress and equilibrium stress is restricted by
the kinematic condition (equation (B.2)) which couples the overstress part and equilibrium stresspart. That
is why the strain response of each loading, either viscoelastic laoding or viscoplastic loading, is defined by
a corresponding differential equation. The strain response in case of viscoelastic behaviour is determined
by


viscoelastic behaviour:
τ̇
G
+


τ
η


=


(
1+


G1


G


)
γ̇el2+


G1


η
γel2 (B.29)


with respect toγ̇ = γ̇el2. The material behaviour in the range of viscoplastic loading is given by the differ-
ential equation


viscoplastic loading:
τ̇
G
+


τ
η
−sign(γ̇pl)


τy G1


η (G1+G2)
=


(
1+


G1G2


G(G1+G2)


)
γ̇ +


G1G2


η (G1+G2)
γ . (B.30)


The solving procedure to obtain the strain response of figure7(b) is explained in the following. The times
of the transition from viscoelastic to viscoplastic loading (t1, t3 andt5) are defined by nonlinear equations
which cannot be solved analytically by the authors of this work. Thus, a fully analytically description of
the strain response cannot be specified. They were solved numerically instead and calculated forG= 1Pa,
η = 0.5Pas,G1 = 1Pa,G2 = 0.5Pa,τy = 0.5Pa,T = 1s andτ̂ = 1.


0≤ t ≤ t1 : γ(t) =C1e
−


G1 G
η(G+G1)


t
+


τ̂
T


η
G1


(
1
G
−


G+G1


GG1


)
+


τ̂
T


1
G1


t (B.31)


C1 =−
τ̂
T


η
G1


(
1
G
−


G+G1


GG1


)
(B.32)


t1 → numerically determined by:γ(t = t1)−
τy


G1
= 0 (B.33)


t1 = 0.76804s
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t1 ≤ t ≤ T : γ(t) =C2e
−


G1 G2 G
η[G(G1+G2)+G1G2]


t
−


τ̂
T


η(G1+G2)
2


(G1G2)2 −
τy


G2
+


τ̂
T


G1+G2


G1G2
t (B.34)


C2 =


(
τy


G1
+


τ̂
T


η(G1+G2)
2


(G1G2)2 +
τy


G2
−


τ̂
T


G1+G2


G1G2
t1


)
e


G1G2 G
η[G(G1+G2)+G1G2]


t1 (B.35)


γpl(t = T) =
G1


G1+G2
γ(t = T)−


τy


G1+G2
(B.36)


T ≤ t ≤ t3 : γ(t) =C3e
−


G1 G
η(G+G1)


t
+


2τ̂
G1


−
τ̂
T


η
G1


(
1
G
−


G+G1


GG1


)
−


τ̂
T


1
G1


t + γpl(t = T) (B.37)


C3 =


[
γ(t = T)−


τ̂
G1


+
τ̂
T


η
G1


(
1
G
−


G+G1


GG1


)
− γpl(t = T)


]
e


G1 G
η(G+G1)


T
(B.38)


t3 → numerically determined by:γ(t = t3)−
−τy +(G1+G2)γpl(t = T)


G1
= 0 (B.39)


t3 = 2.7453s


t3 ≤ t ≤ 3T : γ(t) =C4e
−


G1 G2 G
η[G(G1+G2)+G1G2]


t
+


τ̂
T


η(G1+G2)
2


(G1G2)2 +
τy


G2
+


2τ̂(G1+G2)


G1G2
−


τ̂
T


G1+G2


G1G2
t (B.40)


C4 =


(
γ(t = t3)−


τ̂
T


η(G1+G2)
2


(G1G2)2 −
τy


G2
−


2τ̂(G1+G2)


G1G2
+


τ̂
T


G1+G2


G1G2
t3


)
e


G1 G2G
η[G(G1+G2)+G1G2]


t3 (B.41)


γpl(t = 3T) =
G1


G1+G2


[
γ(t = 3T)− γ(t = t3)


]
+ γpl(t = T) (B.42)


3T ≤ t ≤ t5 : γ(t) =C5e
−


G1 G
η(G+G1)


t
−


4τ̂
G1


+
τ̂
T


η
G1


(
1
G
−


G+G1


GG1


)
+


τ̂
T


1
G1


t + γpl(t = 3T) (B.43)


C5 =


[
γ(t = 3T)+


τ̂
G1


−
τ̂
T


η
G1


(
1
G
−


G+G1


GG1


)
− γpl(t = 3T)


]
e


G1G
η(G+G1)


3T
(B.44)


t5 → numerically determined by:γ(t = t5)−
τy +(G1+G2)γpl(t = 3T)


G1
= 0 (B.45)


t5 = 4.8222s


t5 ≤ t ≤ 5T : γ(t) =C6e
−


G1 G2 G
η[G(G1+G2)+G1G2]


t
−


τ̂
T


η(G1+G2)
2


(G1G2)2 −
τy


G2
−


4τ̂(G1+G2)


G1G2
+


τ̂
T


G1+G2


G1G2
t (B.46)


C6 =


(
γ(t = t5)+


τ̂
T


η(G1+G2)
2


(G1G2)2 +
τy


G2
+


4τ̂(G1+G2)


G1G2
−


τ̂
T


G1+G2


G1G2
t5


)
e


G1 G2G
η[G(G1+G2)+G1G2]


t5 (B.47)


The equilibrium strain is given by the solution of the equilibrium stress part of the material model.


0≤ t ≤
τy


τ̂
T : γeq(t) =


1
G1


τ̂
T


t (B.48)


τy


τ̂
T ≤ t ≤ T : γeq(t) =


(
1


G1
+


1
G2


)
τ̂
T


t −
τy


G2
(B.49)


T ≤ t ≤
2τy + τ̂


τ̂
T : γeq(t) =


1
G1


(
−


τ̂
T


t +2τ̂
)
+


+τ̂ − τy


G2
(B.50)


2τy + τ̂
τ̂


T ≤ t ≤ 3T : γeq(t) =


(
1


G1
+


1
G2


) (
−


τ̂
T


t +2τ̂
)
+


τy


G2
(B.51)


3T ≤ t ≤
2τy +3τ̂


τ̂
T : γeq(t) =


1
G1


(
+


τ̂
T


t −4τ̂
)
+


−τ̂ + τy


G2
(B.52)


2τy +3τ̂
τ̂


T ≤ t ≤ 5T : γeq(t) =


(
1


G1
+


1
G2


) (
+


τ̂
T


t −4τ̂
)
−


τy


G2
(B.53)


The total strain is plotted in figure7(b)as parameter-dependent set of[τ(t); γ(t)] with the timet as param-
eter. The same holds for the equilibrium relation[τ(t); γeq(t)].
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B.4 Total strain response of the MAXWELL element according to cyclic stress con-
trolled loading


In the following the analytical descripton for the strain response of the MAXWELL element in case of cyclic
stress controlled loading are determined as solutions of the constitutive equation (21).


0≤ t ≤ T : γ(t) =
1
G


τ̂
T


t +
1
η


τ̂
T


t2


2
(B.54)


T ≤ t ≤ 3T : γ(t) =
1
G


(
+2τ̂ −


τ̂
T


t


)
+


1
η


(
+2τ̂ t −


τ̂
T


t2


2
− τ̂ T


)
(B.55)


3T ≤ t ≤ 5T : γ(t) =
1
G


(
−4τ̂ +


τ̂
T


t


)
+


1
η


(
−4τ̂ t +


τ̂
T


t2


2
+8τ̂ T


)
(B.56)


B.5 One-dimensional constitutive equations of the material model of figure 10(a)


In the following the one-dimensional constitutive equations of a viscoplastic yield stress fluid according to
figure10(a)is briefly summarised.


kinetic condition: τ = τov+ τeq (B.57)


kinematic condition: γ = γel1+ γv = γel2+ γpl (B.58)


overstress: τov = Gγel1 = η γ̇v (B.59)


equilibrium stress: τeq= G1 γel2 = τf (B.60)


stress of the friction element: τf = sign(γ̇pl)τy (B.61)


yield function: F = |τeq|− τy (B.62)


associated flow rule: γ̇pl = ζ
∂F(τeq)


∂τeq = ζ sign(τeq) (B.63)


KARUSH-KUHN-TUCKER conditions: F(τeq)≤ 0 (B.64)


ζ ≥ 0 (B.65)


ζ F(τeq) = 0 (B.66)


consistency condition: ζ Ḟ(τeq) = 0 if: F(τeq) = 0 (B.67)


loading and unloading conditions:


(F < 0) ⇒ (ζ = 0) . . . viscoelastic behaviour (B.68)


(F = 0) ∧
[
(Ḟ < 0)⇒ (ζ = 0)


]
. . . viscoelastic unloading (B.69)


(F = 0) ∧
[
(Ḟ = 0)∧ (ζ = 0)


]
. . . neutral loading (B.70)


(F = 0) ∧
[
(Ḟ = 0)∧ (ζ > 0)


]
. . . viscoplastic loading (B.71)


The proportionality factorζ is determined bẏF(τeq) = 0 and yields


ζ = sign(τeq) γ̇ . (B.72)


B.6 Total strain response of the material model of figure10(a)according to cyclic
stress controlled loading


The determination of the strain response in case of cyclic stress controlled loading cannot be done sepa-
rately for the overstress part and equilibrium stress part of the material model because they are additively
connected due to equation (B.57). The kinematic condition (equation (B.58)) couples the overstress part
and equilibrium stress part and restricts the applied totalstress. Analog to the procedure of supplemental
informationB.3, each loading of the material model of figure10(a), either viscoelastic or viscoplastic, is
defined by a corresponding differential equation in a similar way. The strain response for viscoelastic be-
haviour is determined by equation (B.29) with respect toγ̇ = γ̇el2 too. In case of viscoplastic loading the
material behaviour is given by the differential equation


viscoplastic loading:
τ̇
G
+


τ
η
− sign(γ̇pl)


τy


η
= γ̇ (B.73)
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and the plastic strain rate is related to the total strain rate


viscoplastic loading: γ̇pl = γ̇ (B.74)


by equations (B.63) and (B.72). The solving procedure to obtain the strain response of figure11(b)is similar
to that in supplemental informationB.3. The transition from viscoelastic to viscoplastic loadinghappens
at t1, t3 andt5. These times are defined by nonlinear equations which were solved numerically because the
authors of this work could not solve them analytically. Thatis why a fully analytically description of the
strain response cannot be specified.


0≤ t ≤ t1 : γ(t) =C1e
−


G1 G
η(G+G1)


t
+


τ̂
T


η
G1


(
1
G
−


G+G1


GG1


)
+


τ̂
T


1
G1


t (B.75)


C1 =−
τ̂
T


η
G1


(
1
G
−


G+G1


GG1


)
(B.76)


t1 → numerically determined by:γ(t = t1)−
τy


G1
= 0 (B.77)


t1 = 0.76804s


t1 ≤ t ≤ T : γ(t) =C2+


(
+


τ̂
T


1
G
−


τy


η


)
t +


τ̂
T


t2


2η
(B.78)


C2 =
τy


G1
−


(
τ̂
T


1
G
−


τy


η


)
t1−


τ̂
T


t12


2η
(B.79)


γpl(t = T) = γ(t = T)−
τy


G1
(B.80)


T ≤ t ≤ t3 : γ(t) =C3e
−


G1 G
η(G+G1)


t
+


2τ̂
G1


−
τ̂
T


η
G1


(
1
G
−


G+G1


GG1


)
−


τ̂
T


1
G1


t + γpl(t = T) (B.81)


C3 =


[
γ(t = T)−


τ̂
G1


+
τ̂
T


η
G1


(
1
G
−


G+G1


GG1


)
− γpl(t = T)


]
e


G1 G
η(G+G1)


T
(B.82)


t3 → numerically determined by:γ(t = t3)−
−τy +G1γpl(t = T)


G1
= 0 (B.83)


t3 = 2.8414s


t3 ≤ t ≤ 3T : γ(t) =C4+


(
−


τ̂
T


1
G
+


2τ̂ + τy


η


)
t −


τ̂
T


t2


2η
(B.84)


C4 = γ(t = t3)−


(
−


τ̂
T


1
G
+


2τ̂ + τy


η


)
t3+


τ̂
T


t32


2η
(B.85)


γpl(t = 3T) = γ(t = 3T)− γ(t = t3)+ γpl(t = T) (B.86)


3T ≤ t ≤ t5 : γ(t) =C5e
−


G1 G
η(G+G1)


t
−


4τ̂
G1


+
τ̂
T


η
G1


(
1
G
−


G+G1


GG1


)
+


τ̂
T


1
G1


t + γpl(t = 3T) (B.87)


C5 =


[
γ(t = 3T)+


τ̂
G1


−
τ̂
T


η
G1


(
1
G
−


G+G1


GG1


)
− γpl(t = 3T)


]
e


G1 G
η(G+G1)


3T
(B.88)


t5 → numerically determined by:γ(t = t5)−
τy +G1γpl(t = 3T)


G1
= 0 (B.89)


t3 = 4.8414s


t5 ≤ t ≤ 5T : γ(t) =C6+


(
τ̂
T


1
G
−


4τ̂ + τy


η


)
t +


τ̂
T


t2


2η
(B.90)


C6 = γ(t = t5)−


(
τ̂
T


1
G
−


4τ̂ + τy


η


)
t5−


τ̂
T


t52


2η
(B.91)
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