Towards constitutive equations of complex fluids derived from thermodynamically guided molecular simulations

Patrick Ilg

University of Reading, UK

thanks to: M. Kröger, H.C. Öttinger
Table of contents

Tutorial Example: XY model
Statistical Mechanics
Maximum-Entropy Closures
Mori-Zwanzig approach
Macroscopic Poisson Bracket
Thermodynamic Integration
Friction Matrix
Open questions
Towards constitutive equations of complex fluids derived from thermodynamically guided molecular simulations

Tutorial Example: XY model

Tutorial Example

Chaikin, Lubensky: macroscopic dynamics of real physical systems is either quite complicated ... or confusing because of possibly unfamiliar time evolution.

Thus, study simple model system:
- no known physical realization
- but illustrate essential features
Chaikin, Lubensky: macroscopic dynamics of real physical systems is either quite complicated ... or confusing because of possibly unfamiliar time evolution.

Thus, study simple model system:
- no known physical realization
- but illustrate essential features
Study simple model system and learn essential features of thermodynamically consistent coarse graining.

Consider a system of N identical, two-dimensional spins $\mathbf{u}_j = (\sin \theta_j, \cos \theta_j)$. The $2N$ microscopic degrees of freedom are $z = (\theta_1, \ldots, \theta_N, l_1, \ldots, l_N)$. Hamiltonian

$$\mathcal{H}(z) = \sum_{j=1}^{N} \frac{l_j^2}{2I} - \frac{J}{2} \sum_{<i,j>} \cos(\theta_i - \theta_j)$$
Towards constitutive equations of complex fluids derived from thermodynamically guided molecular simulations

Tutorial Example: XY model

Hamilton’s equations of motion:

\[
\begin{align*}
\dot{\theta}_j &= \frac{\partial H}{\partial l_j} = l_j/l \\
\dot{l}_j &= -\frac{\partial H}{\partial \theta_j} = -J \sum_{k(\text{nnj})} \sin(\theta_j - \theta_k)
\end{align*}
\]

equivalent formulation

\[
\frac{d}{dt} A(z) = i\mathcal{L}A = \{A, H\}
\]

with microscopic Poisson bracket

\[
\{A, B\} = \sum_{j=1}^{N} \left(\frac{\partial A}{\partial \theta_j} \frac{\partial B}{\partial l_j} - \frac{\partial A}{\partial l_j} \frac{\partial B}{\partial \theta_j} \right)
\]
Towards constitutive equations of complex fluids derived from thermodynamically guided molecular simulations

Tutorial Example: XY model dynamics

Hamilton’s equations of motion:

\[
\dot{\theta}_j = \frac{\partial \mathcal{H}}{\partial l_j} = \frac{l_j}{l}
\]

\[
\dot{l}_j = -\frac{\partial \mathcal{H}}{\partial \theta_j} = -J \sum_{k(nnj)} \sin(\theta_j - \theta_k)
\]

equivalent formulation

\[
\frac{d}{dt} A(z) = i \mathcal{L} A = \{A, \mathcal{H}\}
\]

with microscopic *Poisson bracket*

\[
\{A, B\} = \sum_{j=1}^{N} \left(\frac{\partial A}{\partial \theta_j} \frac{\partial B}{\partial l_j} - \frac{\partial A}{\partial l_j} \frac{\partial B}{\partial \theta_j} \right)
\]
Towards constitutive equations of complex fluids derived from thermodynamically guided molecular simulations

Tutorial Example: Poisson bracket

Properties of Poisson bracket

- anti-symmetry
 \[\{ A, B \} = -\{ B, A \} \]

- Leibniz rule
 \[\{ AB, C \} = A\{ B, C \} + \{ A, C \}B \]

- Jacobi-identity
 \[\{ A, \{ B, C \} \} + \{ B, \{ C, A \} \} + \{ C, \{ A, B \} \} = 0 \]
Tutorial Example: conservation laws

Fixed lattice \Rightarrow only 2 conserved quantities

1. total energy $E = \mathcal{H}$
2. total angular momentum $L = \sum_{j=1}^{N} l_j$
Towards constitutive equations of complex fluids derived from thermodynamically guided molecular simulations

Tutorial Example: XY model

Tutorial Example: choice of collective variables

On macroscopic scales, most disturbances decay rapidly to equilibrium.
On macroscopic scales, most disturbances decay rapidly to equilibrium.

Want to choose collective variables that are slowly evolving.
On macroscopic scales, most disturbances decay rapidly to equilibrium. Want to choose collective variables that are \textit{slowly} evolving. Certainly need:

- densities of conserved quantities
- broken-symmetry variables

That’s all for our tutorial example.
Towards constitutive equations of complex fluids derived from thermodynamically guided molecular simulations

Tutorial Example: XY model

Tutorial Example: choice of collective variables

On macroscopic scales, most disturbances decay rapidly to equilibrium. Want to choose collective variables that are *slowly* evolving. Certainly need:

- densities of conserved quantities
- broken-symmetry variables

That’s all for our tutorial example.

But which additional ones for complex fluids??
Towards constitutive equations of complex fluids derived from thermodynamically guided molecular simulations

Tutorial Example: XY model

Tutorial Example: choice of collective variables

On macroscopic scales, most disturbances decay rapidly to equilibrium.
Want to choose collective variables that are *slowly* evolving.
Certainly need:

- densities of conserved quantities
- broken-symmetry variables

That’s all for our tutorial example.
But which additional ones for complex fluids??
Towards constitutive equations of complex fluids derived from thermodynamically guided molecular simulations

Tutorial Example: XY model

Tutorial Example: densities of conserved quantities

define macroscopic fields

\[\varepsilon(r, t) = \langle \Pi \varepsilon(r, t) \rangle, \quad \ell(r, t) = \langle \Pi \ell(r, t) \rangle \]

with mappings \(\Pi_k : z \mapsto \Pi_k \)

\[
\Pi \varepsilon(r, t) = \sum_{j=1}^{N} \left(\frac{l_j^2}{2I} - \frac{J}{2} \sum_{i\text{(nnj)}} \cos(\theta_{ij}) \right) \chi(r - r_j) \\
= \sum_{j=1}^{N} \varepsilon_j \chi(r - r_j) \\

\Pi \ell(r, t) = \sum_{j=1}^{N} l_j \chi(r - r_j)
\]
Towards constitutive equations of complex fluids derived from thermodynamically guided molecular simulations

Tutorial Example: XX model

Tutorial Example: densities of conserved quantities

Define macroscopic fields

\[
\varepsilon(r, t) = \langle \Pi\varepsilon(r, t) \rangle, \quad \ell(r, t) = \langle \Pi\ell(r, t) \rangle
\]

with mappings \(\Pi_k : z \mapsto \Pi_k \)

\[
\Pi\varepsilon(r, t) = \sum_{j=1}^{N} \left(\frac{l_j^2}{2l} - \frac{J}{2} \sum_{i(nnj)} \cos(\theta_{ij}) \right) \chi(r - r_j)
\]

\[
= \sum_{j=1}^{N} \varepsilon_j \chi(r - r_j)
\]

\[
\Pi\ell(r, t) = \sum_{j=1}^{N} l_j \chi(r - r_j)
\]
Towards constitutive equations of complex fluids derived from thermodynamically guided molecular simulations

Tutorial Example: XY model

define macroscopic fields

\[\varepsilon(r, t) = \langle \Pi_\varepsilon(r, t) \rangle, \quad \ell(r, t) = \langle \Pi_\ell(r, t) \rangle \]

with mappings \(\Pi_k : z \mapsto \Pi_k \)

\[
\Pi_\varepsilon(r, t) = \sum_{j=1}^{N} \left(\frac{l_j^2}{2l} - \frac{J}{2} \sum_{i \in \{\text{nn}j\}} \cos(\theta_{ij}) \right) \chi(r - r_j)
\]

\[
= \sum_{j=1}^{N} \varepsilon_j \chi(r - r_j)
\]

\[
\Pi_\ell(r, t) = \sum_{j=1}^{N} l_j \chi(r - r_j)
\]
Towards constitutive equations of complex fluids derived from thermodynamically guided molecular simulations

Tutorial Example: XY model

direct calculation:

\[\dot{\Pi}_\ell(r, t) = \left\{ \Pi_\ell(r, t), \mathcal{H} \right\} \]

\[= - \sum_j \frac{\partial \mathcal{H}}{\partial \theta_j} \chi(r - r_j) = -J \sum_{\langle i,j \rangle} \sin(\theta_i - \theta_j) \chi(r - r_j) \]

\[= -\frac{J}{2} \sum_{\langle i,j \rangle} \sin(\theta_i - \theta_j) (\chi(r - r_j) - \chi(r - r_i)) \]

Use identity \(\chi(r - r_j) - \chi(r - r_i) = -\frac{\partial}{\partial r} \cdot \int_0^1 ds r_ij \chi(r - r_i + sr_{ij}) \)
Tutorial Example: time evolution of mapping

direct calculation:

\[\dot{\Pi}_\ell(r, t) = \{\Pi_\ell(r, t), \mathcal{H}\} \]

\[= - \sum_j \frac{\partial \mathcal{H}}{\partial \theta_j} \chi(r - r_j) = -J \sum_{<i,j>} \sin(\theta_i - \theta_j) \chi(r - r_j) \]

\[= -\frac{J}{2} \sum_{<i,j>} \sin(\theta_i - \theta_j) (\chi(r - r_j) - \chi(r - r_i)) \]

Use identity \(\chi(r - r_j) - \chi(r - r_i) = -\frac{\partial}{\partial r} \cdot \int_0^1 ds \, r_{ij} \chi(r - r_i + sr_{ij}) \)

\(\Rightarrow \) find form of (instantaneous) local conservation law

\[\dot{\Pi}_\ell(r, t) = -\frac{\partial}{\partial r} \cdot \hat{\tau}(r, t) \]

\[\hat{\tau}(r, t) = \frac{J}{2} \sum_{<i,j>} r_{ij} \sin(\theta_{ij}) \int_0^1 ds \chi(r - r_i + sr_{ij}) \]
Tutorial Example: time evolution of mapping

direct calculation:

\[\dot{\Pi}_\ell(r, t) = \{ \Pi_\ell(r, t), \mathcal{H} \} \]

\[= -\sum_j \frac{\partial \mathcal{H}}{\partial \theta_j} \chi(r - r_j) = -J \sum_{<i,j>} \sin(\theta_i - \theta_j) \chi(r - r_j) \]

\[= -\frac{J}{2} \sum_{<i,j>} \sin(\theta_i - \theta_j) (\chi(r - r_j) - \chi(r - r_i)) \]

Use identity \(\chi(r - r_j) - \chi(r - r_i) = -\frac{\partial}{\partial r} \cdot \int_0^1 ds \, r_{ij} \chi(r - r_i + s r_{ij}) \)

\(\Rightarrow \) find form of (instantaneous) local conservation law

\[\dot{\Pi}_\ell(r, t) = -\frac{\partial}{\partial r} \cdot \hat{\tau}(r, t) \]

\[\hat{\tau}(r, t) = \frac{J}{2} \sum_{<i,j>} r_{ij} \sin(\theta_{ij}) \int_0^1 ds \, \chi(r - r_i + s r_{ij}) \]
Towards constitutive equations of complex fluids derived from thermodynamically guided molecular simulations

Tutorial Example: XY model

Tutorial Example: time evolution of mapping

Similar calculation for the energy density gives

\[
\dot{\Pi}_\varepsilon(r, t) = -\frac{\partial}{\partial r} \cdot \hat{j}(r, t)
\]

\[
\hat{j}(r, t) = \frac{J}{2l} \sum_{<i,j>} (l_i + l_j) r_{ij} \sin(\theta_{ij}) \int_0^1 ds \chi(r - r_i + sr_{ij})
\]
balance equations for mappings

- fields are smeared out in space
- but rapidly varying in time
- microscopic expressions can be evaluated in MD
- but are not in closed-form for coarse-grained description,

\[
\dot{\Pi}_k \neq G_k(\Pi_{\varepsilon}, \Pi_\ell), \quad k = (\varepsilon, \ell)
\]

- how to obtain closed-form equations for macroscopic variables

\[
x_k = \langle \Pi_k \rangle?
\]
scale bridging!

- brute force approach is computationally very expensive or even unfeasible
- “... molecular modeling has become standard ... severe time and length scale limitations. Simulations on scales [>100nm, > 1µs] impossible without multiscale modeling.”
- “... progress is coming more through refined simulations than from increased computational power.”
it is neither feasible nor desirable to specify initial conditions for \(z \) for a macroscopic system.

rather specify probability density of initial conditions \(\rho(z; 0) \).

aim is then to find \(\rho(z; t) \) for some later time \(t \).

\(\rho(z; t) \) still too detailed, really only interested in a few macroscopic quantities \(x \).
Towards constitutive equations of complex fluids derived from thermodynamically guided molecular simulations

Statistical Mechanics

Microscopic dynamics

- microstate \(z \in \Gamma \subset IR^n \)

- probability density \(\rho(z; t) \)
 with \(\rho(z; t) \geq 0, \int_{\Gamma} dz \rho(z; t) = 1. \)

- microscopic dynamics (e.g. Liouville, Fokker-Planck)

\[
\frac{\partial}{\partial t} \rho = -i \mathcal{L} \rho
\]

- averages: \(\langle A \rangle(t) = \int_{\Gamma} dz A(z) \rho(z; t) \)
Collective variables and closure problem

- coarse-grained state specified by a few macroscopic (collective) variables only, $x = \{x_1, \ldots, x_n\}$,

\[x_k(t) = \int_{\Gamma} dz \, \Pi_k(z) \rho(z; t), \quad k = 1, \ldots, n \]

- but no closed-form equations for moments

\[
\frac{d}{dt} x_k = \int_{\Gamma} dz \, \Pi_k(z)(-i\mathcal{L})\rho(z; t) \\
= G_k(x_1, \ldots, x_n, x_{n+1}, \ldots)
\]
Example of “closure problems”

- BBGKY hierarchy
- rare events
- polymers and soft matter
- subgrid turbulence modeling
- reaction kinetics
- ...
slow manifolds

how to close moment system?
simply truncating is dangerous, often leads to thermodynamically inadmissible, ill-behaved equations.

choose \(\rho^* \) to capture coarse-grained manifold \(\{ \rho^* \} \) hopefully "slow"
slow manifolds

how to close moment system?
simply truncating is dangerous, often leads to thermodynamically inadmissible, ill-behaved equations.

- choose “relevant” density $\rho^* = \rho^*_x$ to capture coarse-grained state
- manifold $\{\rho^*_x\}$ hopefully “slow”
Towards constitutive equations of complex fluids derived from thermodynamically guided molecular simulations

Maximum-Entropy Closures

slow manifolds

how to close moment system?
simply truncating is dangerous, often leads to thermodynamically inadmissible, ill-behaved equations.

- choose “relevant” density $\rho^* = \rho_x^*$ to capture coarse-grained state
- manifold $\{\rho_x^*\}$ hopefully “slow”
maximum entropy distribution

- entropy functional \(S[\rho] = - \int_{\Gamma} dz \rho \ln(\rho/\rho_0) \)
- maximum entropy principle

\[
S[\rho] \rightarrow \text{max, } x_k[\rho] \text{ fixed}
\]
maximum entropy distribution

- entropy functional $S[\rho] = - \int_{\Gamma} dz \rho \ln(\rho/\rho_0)$
- maximum entropy principle

$$S[\rho] \rightarrow \text{max}, \quad x_k[\rho] \text{ fixed}$$

- solution: quasi-equilibrium (generalized canonical) distribution

$$\rho^*(z) = \rho_0(z) \exp \left[-\lambda_k \Pi_k(z) + \beta G(\lambda) \right]$$

$$x_k^* = \int_{\Gamma} dz \Pi_k(z) \rho^*(z)$$
Maximum-Entropy Closures

maximum entropy distribution

- entropy functional \(S[\rho] = -\int_{\Gamma} dz \rho \ln(\rho/\rho_0) \)
- maximum entropy principle

\[S[\rho] \to \text{max}, \quad x_k[\rho] \text{ fixed} \]

- solution: quasi-equilibrium (generalized canonical) distribution

\[\rho^*(z) = \rho_0(z) \exp \left[-\lambda_k \Pi_k(z) + \beta G(\lambda) \right] \]
\[x_k^* = \int_{\Gamma} \Pi_k(z) \rho^*(z) \]

- with Lagrange multiplier \(\lambda_k = \lambda_k(x) \)

[Gibbs; Jaynes; Grad, etc.]
maximum entropy distribution

- entropy functional
 \[S[\rho] = - \int_{\Gamma} dz \rho \ln(\rho/\rho_0) \]

- maximum entropy principle
 \[S[\rho] \to \max, \quad x_k[\rho] \text{ fixed} \]

- solution: quasi-equilibrium (generalized canonical) distribution
 \[\rho^*(z) = \rho_0(z) \exp[-\lambda_k \Pi_k(z) + \beta G(\lambda)] \]
 \[x_k^* = \int_{\Gamma} dz \Pi_k(z) \rho^*(z) \]

- with Lagrange multiplier \(\lambda_k = \lambda_k(x) \)

[Gibbs; Jaynes; Grad, etc.]
Generating function

normalization of probability density:

\[e^{-\beta G(\lambda)} = \int dz \rho_0(z) e^{-\lambda_k \Pi_k(z)} \]

macro variables from derivative

\[\frac{\partial (\beta G)}{\partial \lambda_k} = \int dz \rho^*(z) \Pi_k(z) = x_k \]
Generating function

normalization of probability density:

$$e^{-\beta G(\lambda)} = \int \text{d}z \, \rho_0(z) e^{-\lambda_k \Pi_k(z)}$$

macro variables from derivative

$$\frac{\partial (\beta G)}{\partial \lambda_k} = \int \text{d}z \, \rho^*(z) \Pi_k(z) = x_k$$
Quasi-equilibrium entropy

define

\[S^*(x) = S[\rho^*] \]
Quasi-equilibrium entropy

define

\[S^*(x) = S[\rho^*] \]

insert definition:

\[S^*(x) = -\beta G + \lambda_k x_k + S_0 \]

with \(S_0 = \text{const. for } \rho_0 = \text{const.} \)
and \(S_0 = \beta(F_0 - E) \) if \(\rho_0 \) canonical.
Quasi-equilibrium entropy

define

\[S^*(x) = S[\rho^*] \]

insert definition:

\[S^*(x) = -\beta G + \lambda_k x_k + S_0 \]

with \(S_0 = \text{const. for } \rho_0 = \text{const.} \)

and \(S_0 = \beta (F_0 - E) \) if \(\rho_0 \) canonical.

Thus, \(S \) is Legendre transform of \(G \) and

- Lagrange multipliers as dual variables

\[\frac{\partial S^*}{\partial x_k} = \lambda_k \]
Quasi-equilibrium entropy

define

\[S^*(x) = S[\rho^*] \]

insert definition:

\[S^*(x) = -\beta G + \lambda_k x_k + S_0 \]

with \(S_0 = \text{const. for } \rho_0 = \text{const.} \)
and \(S_0 = \beta (F_0 - E) \) if \(\rho_0 \) canonical.

Thus, \(S \) is Legendre transform of \(G \) and

- Lagrange multipliers as dual variables

\[\frac{\partial S^*}{\partial x_k} = \lambda_k \]
Towards constitutive equations of complex fluids derived from thermodynamically guided molecular simulations

Maximum-Entropy Closures

Tutorial Example: statistical mechanics

relevant ensemble: generalized canonical distribution

\[\rho(z) = \frac{1}{\Xi} \exp \left[-\int d^d r \beta(r) \Pi_\varepsilon(z;r) - \int d^d r \lambda(r) \Pi_\ell(z;r) \right] \]

\[\Xi(T,\lambda) = \int d^N \theta d^N l \exp \left[-\int d^d r \beta(r) \Pi_\varepsilon(z;r) - \int d^d r \lambda(r) \Pi_\ell(z;r) \right] \]

\(\beta, \lambda \): Lagrange multipliers conjugate to the collective variables,

\[-\frac{\delta \ln \Xi}{\delta \beta(r)} = \langle \Pi_\varepsilon \rangle = \varepsilon(r), \quad -\frac{\delta \ln \Xi}{\delta \lambda(r)} = \langle \Pi_\ell \rangle = \ell(r) \]
Tutorial Example: statistical mechanics

relevant ensemble: generalized canonical distribution

\[
\rho(z) = \frac{1}{\Xi} \exp \left[- \int d^d r \beta(r) \Pi_\varepsilon(z; r) - \int d^d r \lambda(r) \Pi_\ell(z; r) \right]
\]

\[
\Xi(T, \lambda) = \int d^N \theta d^N l \ exp \left[- \int d^d r \beta(r) \Pi_\varepsilon(z; r) - \int d^d r \lambda(r) \Pi_\ell(z; r) \right]
\]

\(\beta, \lambda\): Lagrange multipliers conjugate to the collective variables,

\[
- \frac{\delta \ln \Xi}{\delta \beta(r)} = \langle \Pi_\varepsilon \rangle = \varepsilon(r), \quad - \frac{\delta \ln \Xi}{\delta \lambda(r)} = \langle \Pi_\ell \rangle = \ell(r)
\]
Towards constitutive equations of complex fluids derived from thermodynamically guided molecular simulations

Maximum-Entropy Closures

Tutorial Example: Entropy

Physically, entropy emerges since we have eliminated degrees of freedom. Legendre transform

\[S[\varepsilon, \ell] = k_B \ln \Xi + k_B \int d^d r \beta(r) \varepsilon(r) + k_B \int d^d r \lambda(r) \ell(r) \]

with

\[\left(\frac{\delta S}{\delta \varepsilon(r)} \right)_\ell = \frac{1}{T(r)}, \quad \left(\frac{\delta S}{\delta \ell(r)} \right)_\varepsilon = k_B \lambda(r) \]
maximum entropy closures

▶ closed equations!

\[
\frac{d}{dt} x_k^* = \int_\Gamma dz \Pi_k(z)(-i\mathcal{L})\rho^*
\]

▶ are we done?
maximum entropy closures

- closed equations!

\[
\frac{d}{dt} x_k^* = \int_{\Gamma} dz \Pi_k(z)(-i\mathcal{L})\rho^*
\]

- are we done?

- maximum entropy closure conserves type of dynamics

\[
\frac{d}{dt} S^* = \frac{d}{dt} S[\rho] \bigg|_{\rho^*}
\]

[Gorban, Karlin, 1992]
maximum entropy closures

- closed equations!

\[
\frac{d}{dt} x_k^* = \int_{\Gamma} dz \, \Pi_k(z)(-i\mathcal{L})\rho^*
\]

- are we done?

- maximum entropy closure conserves type of dynamics

\[
\frac{d}{dt} S^* = \frac{d}{dt} S[\rho] \bigg|_{\rho^*}
\]

[Gorban, Karlin, 1992]
example applications

- polymer solutions
- magnetic fluids
- liquid crystals
- chemical reactions
- etc.
limitations and improvements

- improvement of maximum entropy closures:
 method of invariant manifolds
 (A.N. Gorban, I.V. Karlin)

- but how to derive irreversible equations?
Towards constitutive equations of complex fluids derived from thermodynamically guided molecular simulations

Mori-Zwanzig approach

- \(z = \{p, r\} \in \Gamma \)
- Phase space density \(\rho(z; t) \)
- Liouville equation \(\partial_t \rho = -i \mathcal{L} \rho \)
- Liouville operator

\[
i \mathcal{L} A = \{A, H\} = \sum_{i=1}^{N} \left(\frac{\partial A}{\partial r_i} \cdot \frac{\partial H}{\partial p_i} - \frac{\partial A}{\partial p_i} \cdot \frac{\partial H}{\partial r_i} \right)
\]

Mori-Zwanzig approach
Heisenberg picture of classical mechanics

- formal solution (\mathcal{L} not explicitly time-dependent)
 \[\rho(z; t) = e^{-i\mathcal{L}t} \rho(z; 0) \]
- averages: time-dependent observables

\[
\langle A \rangle(t) = \int_{\Gamma} dz \ A(z) \rho(z; t) \\
= \int_{\Gamma} dz \ A(z) e^{-i\mathcal{L}t} \rho(z; 0) \\
= \int_{\Gamma} dz \ \rho(z; 0) e^{i\mathcal{L}t} A(z)
\]

\[\Rightarrow A(z; t) = e^{i\mathcal{L}t} A(z) \]
Towards constitutive equations of complex fluids derived from thermodynamically guided molecular simulations

Mori-Zwanzig approach

decomposing the dynamics

\[a(t) = \langle A \rangle(t) \Rightarrow \dot{a}(t) = \frac{d}{dt} \langle A \rangle(t) \]

\[= \int_{\Gamma} dz \, \rho(z; 0) i \mathcal{L} e^{i \mathcal{L} t} A(z) \]

define projectors \(\mathcal{P}, \mathcal{Q} = I - \mathcal{P} \)
(with \(\mathcal{P}^2 = \mathcal{P}, \mathcal{Q}^2 = \mathcal{Q}, \mathcal{PQ} = \mathcal{QP} = 0 \))
Towards constitutive equations of complex fluids derived from thermodynamically guided molecular simulations

Mori-Zwanzig approach

\[\frac{d}{dt} A = e^{i\mathcal{L}t}i\mathcal{L}A = e^{i\mathcal{L}t}\mathcal{P}i\mathcal{L}A + O_A \]

Duhamel-Dyson identity

Projected dynamics: hopefully slow

Orthogonal dynamics: \(O_A = e^{i\mathcal{L}t}Q_i\mathcal{L}A \)

Rewrite \(O_A \) using Duhamel-Dyson relation

\[e^{i\mathcal{L}t} = e^{Q_i\mathcal{L}t} + \int_0^t ds \, e^{i\mathcal{L}(t-s)}\mathcal{P}i\mathcal{L}e^{Q_i\mathcal{L}s} \]
Towards constitutive equations of complex fluids derived from thermodynamically guided molecular simulations

Mori-Zwanzig approach

Duhamel-Dyson identity

\[
\frac{d}{dt} A = e^{i\mathcal{L}t} i\mathcal{L}A = e^{i\mathcal{L}t} \mathcal{P} i\mathcal{L}A + O_A
\]

projected dynamics: hopefully slow
orthogonal dynamics: \(O_A = e^{i\mathcal{L}t} Q i\mathcal{L}A \)
rewrite \(O_A \) using Duhamel-Dyson relation

\[
e^{i\mathcal{L}t} = e^{Q i\mathcal{L}t} + \int_0^t ds \ e^{i\mathcal{L}(t-s)} \mathcal{P} i\mathcal{L}e^{Q i\mathcal{L}s}
\]
Towards constitutive equations of complex fluids derived from thermodynamically guided molecular simulations

Mori-Zwanzig approach

equation of motion: exact

projection operator approach uses operator identity

\[
e^{i\mathcal{L}t} = e^{i\mathcal{L}_t} \mathcal{P} + \int_0^t ds \ e^{i\mathcal{L}_s} \mathcal{P} i\mathcal{L} Q e^{i\mathcal{L}_Q(t-s)} + Q e^{i\mathcal{L}_Q(t)}
\]

choose \(A = \Pi_k \)

\[
\frac{d}{dt} \Pi_k = e^{i\mathcal{L}_t} \mathcal{P} i\mathcal{L} \Pi_k + \int_0^t ds \ e^{i\mathcal{L}_t} \mathcal{P} i\mathcal{L} F_k(s) + F_k(t)
\]

\[
F_k(t) = e^{Q i\mathcal{L}_t} Q i\mathcal{L} \Pi_k
\]
Towards constitutive equations of complex fluids derived from thermodynamically guided molecular simulations

Mori-Zwanzig approach

equation of motion: exact

projection operator approach uses operator identity

\[e^{i\mathcal{L}t} = e^{i\mathcal{L}_t} \mathcal{P} + \int_0^t ds e^{i\mathcal{L}_s} \mathcal{P} i\mathcal{L} Q e^{i\mathcal{L}_Q(t-s)} + Q e^{i\mathcal{L}_Q t} \]

choose \(A = \Pi_k \)

\[\frac{d}{dt} \Pi_k = e^{i\mathcal{L}_t} \mathcal{P} i\mathcal{L} \Pi_k + \int_0^t ds e^{i\mathcal{L}_s(t-s)} \mathcal{P} i\mathcal{L} F_k(s) + F_k(t) \]

\[F_k(t) = e^{Q_i\mathcal{L}_t} Q i\mathcal{L} \Pi_k \]
Towards constitutive equations of complex fluids derived from thermodynamically guided molecular simulations

Mori-Zwanzig approach

choice of projector

here: [H. Grabert, 1982]

\[
\mathcal{P}A = \int_{\Gamma} dz \rho^*(z)A(z) + (x_j - \Pi_j) \int_{\Gamma} dz \frac{\partial \rho^*}{\partial x_j} A(z)
\]

\[
e^{i\mathcal{L}t}\mathcal{P}A = \int_{\Gamma} dz \rho_{x(t)}^*(z)A(z) + (x_j - \Pi_j) \int_{\Gamma} dz \frac{\partial \rho^*}{\partial x_j(t)} A(z)
\]

note: other choices (Robertson, etc.) lead to same equations for averages
exact, non-Markovian time evolution

use generalized canonical ensemble for ρ^*

$$\frac{d}{dt} x_k = v_k + \int_0^t ds \ K_{kj}(t, s) \lambda_j(t - s)$$

$$v_k = \left\langle \{ \Pi_k, H \} \right\rangle_{x(t)} \text{ deterministic drift}$$

$$K_{kj}(t, s) = \left\langle F_k(0) F_j(s) \right\rangle_{x(t-s)} \text{ memory kernel}$$

$$F_k(t) = e^{QL_t} Q_i \mathcal{L} \Pi_k \text{ "random force"}$$

$$\lambda_j = \frac{\partial S^*}{\partial x_j}$$

[H. Mori 1965, R. Zwanzig 1961]
Towards constitutive equations of complex fluids derived from thermodynamically guided molecular simulations

Mori-Zwanzig approach

Markovian approximation

crucial assumption: separation of time scales.

collective variables: slowly evolving \((\gg \tau_s)\)

fast fluctuations \((\ll \tau_s) \Rightarrow \text{short memory} \Rightarrow \text{Markovian approximation}\)

\[
\int_0^t ds \ K_{kj}(t, s) \frac{\partial S^*}{\partial x_j} \bigg|_{x(t-s)} \approx M_{kj}(x(t)) \frac{\partial S^*}{\partial x_j} \bigg|_{x(t)}
\]

\[
M_{kj}(x) = \int_0^{\tau_s} ds \langle F_k(0) F_j(s) \rangle
\]

\[
\frac{d}{dt} x_k = \langle \{ \Pi_k, H \} \rangle + M_{kj} \frac{\partial S^*}{\partial x_j}
\]
choice of collective variables

Statistical mechanics does not tell us what the relevant variables are. This is our choice. If we choose well, the results may be useful; if we choose badly, the results will probably be useless.

R. Zwanzig
Towards constitutive equations of complex fluids derived from thermodynamically guided molecular simulations

Mori-Zwanzig approach

4 tasks for coarse grainers

Coarse-graining program has to meet four tasks

1. choice of collective variables x, mapping Π
2. deterministic drift v_k
3. entropy $S^*(x)$
4. friction matrix M
Towards constitutive equations of complex fluids derived from thermodynamically guided molecular simulations

Mori-Zwanzig approach

Macroscopic Poisson bracket

deterministic drift:

\[\nu_k = \langle \{ \Pi_k, H \} \rangle_x(t) \]

require: energy accessible on coarse-grained level \(\mathcal{H}(z) = E(\Pi(z)) \).

Then,

\[\langle \{ \Pi_k, H \} \rangle = L_{kj} \frac{\partial E}{\partial x_j} \]

\[L_{kj} = \langle \{ \Pi_k, \Pi_j \} \rangle \text{ anti-symmetric} \]

and the powerful GENERIC structure emerges

\[
\frac{dx_k}{dt} = L_{kj} \frac{\partial E}{\partial x_j} + M_{kj} \frac{\partial S^*}{\partial x_j}
\]

[M. Grmela, H.C. Öttinger (1997)]
Towards constitutive equations of complex fluids derived from thermodynamically guided molecular simulations
— Mori-Zwanzig approach

4 tasks for coarse grainers

Coarse-graining program has to meet four tasks

1. choice of collective variables, mapping
2. deterministic drift:
 - macroscopic energy $E(x)$.
 - macroscopic Poisson bracket

 $$L_{kj} = \langle \{ \Pi_k, \Pi_j \} \rangle$$

3. entropy $S^*(x)$
4. friction matrix $M(x)$
Back to our tutorial example

Macroscopic energy: \(E = \int \! \! d\mathbf{r} \; \varepsilon(\mathbf{r}) \) and \(\frac{\delta E}{\delta \varepsilon(\mathbf{r})} = 1. \)

Thus,

\[
v_k(\mathbf{r}) = L_{kj} \frac{\partial E}{\partial x_j} = \int d^d r' \langle \{ \Pi_k(\mathbf{r}), \Pi_\varepsilon(\mathbf{r}') \} \rangle
\]
Towards constitutive equations of complex fluids derived from thermodynamically guided molecular simulations

Macroscopic Poisson Bracket

Back to our tutorial example

macroscopic energy: $E = \int \! \! d r \, \varepsilon(r)$ and $\frac{\delta E}{\delta \varepsilon(r)} = 1$.

Thus,

$$v_k(r) = L_{kj} \frac{\partial E}{\partial x_j} = \int \! \! d^d r' \langle \{ \Pi_k(r), \Pi_\varepsilon(r') \} \rangle$$

insert:

$$v_\varepsilon(r, t) = - \frac{\partial}{\partial r} \cdot \langle \hat{j}(r, t) \rangle_x, \quad v_\ell(r, t) = - \frac{\partial}{\partial r} \cdot \langle \hat{\tau}(r, t) \rangle_x$$
Towards constitutive equations of complex fluids derived from thermodynamically guided molecular simulations

Macroscopic Poisson Bracket

Back to our tutorial example

Macroscopic energy: \(E = \int dr \varepsilon(r) \) and \(\frac{\delta E}{\delta \varepsilon(r)} = 1. \)
Thus,

\[
v_k(r) = L_{kj} \frac{\partial E}{\partial x_j} = \int d^d r' \langle \{ \Pi_k(r), \Pi_\varepsilon(r') \} \rangle
\]

insert:

\[
v_\varepsilon(r, t) = -\frac{\partial}{\partial r} \cdot \langle \hat{j}(r, t) \rangle_x, \quad v_\ell(r, t) = -\frac{\partial}{\partial r} \cdot \langle \hat{\tau}(r, t) \rangle_x
\]

In the absence of external perturbations there are no reversible fluxes and therefore

\[
v_\varepsilon = v_\ell = 0.
\]
Towards constitutive equations of complex fluids derived from thermodynamically guided molecular simulations

Macroscopic Poisson Bracket

Back to our tutorial example

Macroscopic energy: \(E = \int d\mathbf{r} \varepsilon(\mathbf{r}) \) and \(\frac{\delta E}{\delta \varepsilon(\mathbf{r})} = 1 \).

Thus,

\[
v_k(\mathbf{r}) = L_{kj} \frac{\partial E}{\partial x_j} = \int d^d \mathbf{r}' \langle \{ \Pi_k(\mathbf{r}), \Pi_\varepsilon(\mathbf{r}') \} \rangle
\]

insert:

\[
v_\varepsilon(\mathbf{r}, t) = -\frac{\partial}{\partial \mathbf{r}} \cdot \langle \mathbf{j}(\mathbf{r}, t) \rangle_x, \quad v_\ell(\mathbf{r}, t) = -\frac{\partial}{\partial \mathbf{r}} \cdot \langle \mathbf{\tau}(\mathbf{r}, t) \rangle_x
\]

In the absence of external perturbations there are no reversible fluxes and therefore

\[
v_\varepsilon = v_\ell = 0.
\]
Include Magnetization

want to describe also anisotropic phase, include additional collective variable:

$$\Pi_m(r, t) = \sum_{j=1}^{N} u_j \chi(r - r_j) = \sum_{j=1}^{N} \left(\begin{array}{c} \sin \theta_j \\ \cos \theta_j \end{array} \right) \chi(r - r_j)$$

with $m = \langle \Pi_m \rangle$ the macroscopic magnetization.

Note: m is NOT a conserved quantity.
Include Magnetization

want to describe also anisotropic phase, include additional collective variable:

\[
\Pi_m(r, t) = \sum_{j=1}^{N} u_j \chi(r - r_j) = \sum_{j=1}^{N} \left(\begin{array}{c} \sin \theta_j \\ \cos \theta_j \end{array} \right) \chi(r - r_j)
\]

with \(m = \langle \Pi_m \rangle \) the macroscopic magnetization.

Note: \(m \) is NOT a conserved quantity.

So there is also not local form of the conservation law expected.
Include Magnetization

want to describe also anisotropic phase, include additional collective variable:

$$\Pi_m(r, t) = \sum_{j=1}^{N} u_j \chi(r - r_j) = \sum_{j=1}^{N} \left(\begin{array}{c} \sin \theta_j \\ \cos \theta_j \end{array} \right) \chi(r - r_j)$$

with $m = \langle \Pi_m \rangle$ the macroscopic magnetization.

Note: m is NOT a conserved quantity.

So there is also not local form of the conservation law expected.

How does the time evolution/macro Poisson bracket look like?
Towards constitutive equations of complex fluids derived from thermodynamically guided molecular simulations

Include Magnetization

want to describe also anisotropic phase, include additional collective variable:

\[\Pi_m(r, t) = \sum_{j=1}^{N} u_j \chi(r - r_j) = \sum_{j=1}^{N} \left(\begin{array}{c} \sin \theta_j \\
\cos \theta_j \end{array} \right) \chi(r - r_j) \]

with \(m = \langle \Pi_m \rangle \) the macroscopic magnetization.

Note: \(m \) is NOT a conserved quantity.

So there is also not local form of the conservation law expected.

How does the time evolution/macro Poisson bracket look like?
additional Poisson bracket

Need to find the deterministic drift for the magnetization

\[v_m(r) = \int \, dr' \, L_{m,\varepsilon}(r, r') \]

\[L_{m,\varepsilon}(r, r') = \langle \{ \Pi_m(r), \Pi_\varepsilon(r') \} \rangle \]

\[= \langle \sum_j \left(\begin{array}{c} \cos \theta_j \\ \sin \theta_j \end{array} \right) \frac{l_j}{l} \chi(r - r_j) \chi(r' - r_j) \rangle \]
additional Poisson bracket

Need to find the deterministic drift for the magnetization

\[v_m(r) = \int dr' L_{m,\varepsilon}(r, r') \]

\[L_{m,\varepsilon}(r, r') = \langle \{ \Pi_m(r), \Pi_\varepsilon(r') \} \rangle \]

\[= \langle \sum_j \left(\begin{array}{c} \cos \theta_j \\ \sin \theta_j \end{array} \right) \frac{l_j}{l} \chi(r - r_j) \chi(r' - r_j) \rangle \]

Averages over angular momenta can be done analytically:

\[L_{m,\varepsilon}(r, r') = \Omega(r) \times m(r) \delta(r' - r) \]

with \(\Omega(r) = (0, 0, \omega(r)) \) and \(\omega(r) = l^{-1} \ell(r) = \lambda(r)/\beta(r) \).
additional Poisson bracket

Need to find the deterministic drift for the magnetization

\[\nu_m(r) = \int \! dr' \, L_{m,\varepsilon}(r, r') \]

\[L_{m,\varepsilon}(r, r') = \langle \{ \Pi_m(r), \Pi_\varepsilon(r') \} \rangle \]
\[= \langle \sum_j \left(\frac{\cos \theta_j}{\sin \theta_j} \right) \frac{l_j}{l} \chi(r - r_j) \chi(r' - r_j) \rangle \]

Averages over angular momenta can be done analytically:

\[L_{m,\varepsilon}(r, r') = \Omega(r) \times m(r) \delta(r' - r) \]

with \(\Omega(r) = (0, 0, \omega(r)) \) and \(\omega(r) = l^{-1} \ell(r) = \lambda(r)/\beta(r) \).

\(\Rightarrow \) co-rotational derivative \(\nu_m = \Omega \times m \) with local angular momentum.
additional Poisson bracket

Need to find the deterministic drift for the magnetization

\[v_m(r) = \int dr' L_{m,\varepsilon}(r, r') \]

\[L_{m,\varepsilon}(r, r') = \langle \{ \Pi_m(r), \Pi_\varepsilon(r') \} \rangle \]

\[= \langle \sum_j \left(\begin{array}{c} \cos \theta_j \\ \sin \theta_j \end{array} \right) \frac{l_j}{l} \chi(r - r_j) \chi(r' - r_j) \rangle \]

Averages over angular momenta can be done analytically:

\[L_{m,\varepsilon}(r, r') = \Omega(r) \times m(r) \delta(r' - r) \]

with \(\Omega(r) = (0, 0, \omega(r)) \) and \(\omega(r) = l^{-1} l(r) = \lambda(r)/\beta(r) \).

\(\Rightarrow \) co-rotational derivative \(v_m = \Omega \times m \) with local angular momentum.
Towards constitutive equations of complex fluids derived from thermodynamically guided molecular simulations

Thermodynamic Integration

4 tasks for coarse grainers

Coarse-graining program has to meet four tasks

1. choice of collective variables, mapping
2. deterministic drift:
 ✓ macroscopic energy $E(x)$.
 ✓ macroscopic Poisson bracket

\[L_{kj} = \langle \{\Pi_k, \Pi_j\} \rangle \]

3. entropy $S^*(x)$
4. friction matrix $M(x)$
Quasi-equilibrium entropy

Want to determine macroscopic entropy $S^*(x)$. Remember dual nature of Lagrange multipliers:

- Lagrange multipliers as dual variables

$$\frac{\partial S^*}{\partial x_k} = \lambda_k$$
Quasi-equilibrium entropy

want to determine macroscopic entropy $S^*(x)$. remember dual nature of Lagrange multipliers:

- Lagrange multipliers as dual variables
 \[\frac{\partial S^*}{\partial x_k} = \lambda_k \]

- recover entropy via thermodynamic integration
 \[S^*(x) - S_0^* = \int_0^x \lambda_k \, dx_k \]
Quasi-equilibrium entropy

want to determine macroscopic entropy $S^*(x)$.
remember dual nature of Lagrange multipliers:

- Lagrange multipliers as dual variables

 $$\frac{\partial S^*}{\partial x_k} = \lambda_k$$

- recover entropy via thermodynamic integration

 $$S^*(x) - S_0^* = \int_0^x \lambda_k \, dx_k$$
near equilibrium

- quasi-equilibrium \(\neq \) near equilibrium
- near equilibrium: linear relation \(x_k = x_{k,eq} - C_{kj} \lambda_j \) with
 \[C_{kj} = \langle \Pi_k \Pi_j \rangle_{eq} - x_{k,eq} x_{j,eq} \]
Towards constitutive equations of complex fluids derived from thermodynamically guided molecular simulations

Thermodynamic Integration

near equilibrium

- quasi-equilibrium \neq near equilibrium
- near equilibrium: linear relation $x_k = x_{k,eq} - C_{kj} \lambda_j$ with $C_{kj} = \langle \Pi_k \Pi_j \rangle_{eq} - x_{k,eq} x_{j,eq}$
- therefore quadratic entropy:
 $$S^*(x) = S^*(0) - \frac{1}{2}(x_j - x_{j,eq})(C^{-1})_{jk}(x_k - x_{k,eq})$$
Towards constitutive equations of complex fluids derived from thermodynamically guided molecular simulations

Thermodynamic Integration

near equilibrium

- quasi-equilibrium \(\neq \) near equilibrium
- near equilibrium: linear relation \(x_k = x_{k,eq} - C_{kj} \lambda_j \) with \(C_{kj} = \langle \Pi_k \Pi_j \rangle_{eq} - x_{k,eq} x_{j,eq} \)
- therefore quadratic entropy:
 \[
 S^*(x) = S^*(0) - \frac{1}{2} (x_j - x_{j,eq}) (C^{-1})_{jk} (x_k - x_{k,eq})
 \]
- starting point for Einstein’s fluctuation theory
near equilibrium

- quasi-equilibrium \neq near equilibrium
- near equilibrium: linear relation $x_k = x_{k,eq} - C_{kj} \lambda_j$ with $C_{kj} = \langle \Pi_k \Pi_j \rangle_{eq} - x_{k,eq} x_{j,eq}$
- therefore quadratic entropy:
 $$S^*(x) = S^*(0) - \frac{1}{2} (x_j - x_{j,eq})(C^{-1})_{jk}(x_k - x_{k,eq})$$
- starting point for Einstein’s fluctuation theory
- in the following, we allow for strong (non-linear) deviations from equilibrium
near equilibrium

- quasi-equilibrium \neq near equilibrium
- near equilibrium: linear relation $x_k = x_{k,eq} - C_{kj} \lambda_j$ with $C_{kj} = \langle \Pi_k \Pi_j \rangle_{eq} - x_{k,eq} x_{j,eq}$
- therefore quadratic entropy:
 $$S^*(x) = S^*(0) - \frac{1}{2} (x_j - x_{j,eq})(C^{-1})_{jk}(x_k - x_{k,eq})$$
- starting point for Einstein’s fluctuation theory
- in the following, we allow for strong (non-linear) deviations from equilibrium
Towards constitutive equations of complex fluids derived from thermodynamically guided molecular simulations

Thermodynamic Integration

Tutorial example

generating function

\[e^{-\beta G(\lambda)} = \int dz \rho_0(z) e^{-\lambda_k \Pi_k(z)} \]

ideal orientational contribution

\[e^{-\beta G_{id}(\lambda)} = e^{-\beta G_0} \int du e^{-\lambda \cdot u} = e^{-\beta G_0} I_0(\lambda) \]

magnetization

\[m = \frac{\partial (\beta G)}{\partial \lambda} = \frac{l_1(\lambda)}{l_0(\lambda)} \]
Tutorial example

generating function

$$e^{-\beta G(\lambda)} = \int dq_{0}(z)e^{-\lambda k \Pi_{k}(z)}$$

ideal orientational contribution

$$e^{-\beta G_{id}(\lambda)} = e^{-\beta G_{0}} \int du e^{-\lambda \cdot u} = e^{-\beta G_{0}} l_{0}(\lambda)$$

magnetization

$$m = \frac{\partial (\beta G)}{\partial \lambda} = \frac{l_{1}(\lambda)}{l_{0}(\lambda)}$$
Tutorial example: ideal contribution to entropy

entropy

\[S(m) = S_0 + \beta G - k_B \lambda \cdot m \]

expansion for weak ordering:
\[\beta (G - G_0) \approx -\lambda^2 / 4 + \lambda^4 / 64 + \ldots \]

\[\Rightarrow S_{id}(m) \approx S_0 - m^2 - m^4 / 4 - 5m^6 / 36 + \ldots \]
Towards constitutive equations of complex fluids derived from thermodynamically guided molecular simulations

Thermodynamic Integration

Tutorial example: ideal contribution to entropy

entropy

\[
S(m) = S_0 + \beta G - k_B \lambda \cdot m
\]

expansion for weak ordering:

\[
\beta(G - G_0) \approx -\frac{\lambda^2}{4} + \frac{\lambda^4}{64} + \ldots
\]

\[
\Rightarrow S_{id}(m) \approx S_0 - m^2 - \frac{m^4}{4} - \frac{5m^6}{36} + \ldots
\]

\[
\Rightarrow S_{id}(m) \text{ is NOT quadratic, diverges near perfectly ordered state!}
\]
Towards constitutive equations of complex fluids derived from thermodynamically guided molecular simulations

Thermodynamic Integration

Tutorial example: ideal contribution to entropy

entropy

\[S(m) = S_0 + \beta G - k_B \lambda \cdot m \]

expansion for weak ordering:

\[\beta (G - G_0) \approx -\lambda^2/4 + \lambda^4/64 + \ldots \]

\[\Rightarrow S_{id}(m) \approx S_0 - m^2 - m^4/4 - 5m^6/36 + \ldots \]

\[\Rightarrow S_{id}(m) \text{ is NOT quadratic, diverges near perfectly ordered state!} \]

\[\Rightarrow \text{recover } S = S_{id} + S_{exc} \text{ numerically from thermodynamic integration (or mean-field calculation).} \]
Towards constitutive equations of complex fluids derived from thermodynamically guided molecular simulations

Thermodynamic Integration

Tutorial example: ideal contribution to entropy

entropy

\[S(m) = S_0 + \beta G - k_B \lambda \cdot m \]

expansion for weak ordering:
\[\beta(G - G_0) \approx -\lambda^2/4 + \lambda^4/64 + \ldots \]

\[\Rightarrow S_{id}(m) \approx S_0 - m^2 - m^4/4 - 5m^6/36 + \ldots \]

\[\Rightarrow S_{id}(m) \text{ is NOT quadratic, diverges near perfectly ordered state!} \]

\[\Rightarrow \text{recover } S = S_{id} + S_{exc} \text{ numerically from thermodynamic integration (or mean-field calculation).} \]
Towards constitutive equations of complex fluids derived from thermodynamically guided molecular simulations

Thermodynamic Integration

Tutorial example: ideal contribution to entropy

entropy

\[S(m) = S_0 + \beta G - k_B \lambda \cdot m \]

expansion for weak ordering:
\[\beta (G - G_0) \approx -\lambda^2 / 4 + \lambda^4 / 64 + \ldots \]

\[\Rightarrow S_{id}(m) \approx S_0 - m^2 - m^4 / 4 - 5m^6 / 36 + \ldots \]

\[\Rightarrow S_{id}(m) \text{ is NOT quadratic, diverges near perfectly ordered state!} \]

\[\Rightarrow \text{recover } S = S_{id} + S_{exc} \text{ numerically from thermodynamic integration (or mean-field calculation).} \]
Towards constitutive equations of complex fluids derived from thermodynamically guided molecular simulations

Thermodynamic Integration

example: Landau-de Gennes free energy for Liquid Crystals
Towards constitutive equations of complex fluids derived from thermodynamically guided molecular simulations

Thermodynamic Integration

example: Landau-de Gennes free energy for Liquid Crystals

- system of N hard, prolate particles
- orientations \mathbf{u}_i
- orientational order parameter
 \[S_2 = \langle P_2(\mathbf{u}_i \cdot \mathbf{n}) \rangle \]
- Monte-Carlo simulations in generalized canonical ensemble
- thermodynamic integration:
 \[\mathcal{F} = F_0 - \int \lambda dS_2 \]
- reconstructed free energy
 \[\mathcal{F} = \mathcal{F}^{id} - aS_2 - bS_2^2 \]

[A. Luo, L. Sagis, PI, JCP 2014]
Towards constitutive equations of complex fluids derived from thermodynamically guided molecular simulations

Thermodynamic Integration

example: random walk

- 3d random walk of N steps Q_1, \ldots, Q_N, each of size b
- end-to-end vector $R = \sum_{i=1}^{N} Q_i$
- collective variable $x = \{M_1, \ldots, M_6\} = \langle RR \rangle$
- $\rho(Q) = \rho_0 \exp \left[-R \cdot \Lambda \cdot R - \lambda_0\right]$
- identify $\Lambda = -\frac{3}{2Nb^2} I + \frac{1}{2} x^{-1}$
- QE entropy: $S^*(x) = \frac{1}{2} \ln \det x - \frac{1}{2Nb^2} tr(x)$
 “entropy spring” potential
Towards constitutive equations of complex fluids derived from thermodynamically guided molecular simulations

Thermodynamic Integration

eexample: entropic spring for unentangled polymers
Towards constitutive equations of complex fluids derived from thermodynamically guided molecular simulations

Thermodynamic Integration

example: entropic spring for unentangled polymers

- bead-spring model of polymer melt
- Monte-Carlo simulations in generalized canonical ensemble
- \(\rho(Q) = \rho_0 \exp \left[-R \cdot \Lambda \cdot R - \lambda_0 \right] \)
- thermodynamic integration:
 \(S^*(x) = S_{eq} + \int_{x_{eq}}^{x} \Lambda : dx \)
Towards constitutive equations of complex fluids derived from thermodynamically guided molecular simulations

Thermodynamic Integration

example: entropic spring for unentangled polymers

- bead-spring model of polymer melt
- Monte-Carlo simulations in generalized canonical ensemble
- \[\rho(Q) = \rho_0 \exp \left[-\mathbf{R} \cdot \mathbf{A} \cdot \mathbf{R} - \lambda_0 \right] \]
- thermodynamic integration:
 \[S^*(x) = S_{eq} + \int_{x_{eq}}^{x} \mathbf{A} : dx \]

\[S^* = S^R(l_1, l_3) + \Delta S(l_1) \]

[PI, M. Kröger, JOR 2011]
4 tasks for coarse grainers

Coarse-graining program has to meet four tasks

1. choice of collective variables, mapping
2. deterministic drift:
 ✓ macroscopic energy $E(x)$.
 ✓ macroscopic Poisson bracket

\[L_{kj} = \langle \{ \Pi_k, \Pi_j \} \rangle \]

3. entropy $S^*(x)$
 ✓ thermodynamic integration $S^*(x) - S_0^* = \int \lambda_k dx_k$

4. friction matrix $M(x)$
Towards constitutive equations of complex fluids derived from thermodynamically guided molecular simulations

Fluctuations

\[\dot{\Pi}_f^\ell(t) = -\frac{\partial}{\partial r_\alpha} e^{iQCL} \hat{\tau}_\alpha \approx -\frac{\partial}{\partial r_\alpha} \hat{\tau}_\alpha(t) \text{ and } \dot{\Pi}_f^\varepsilon(t) \approx -\frac{\partial}{\partial r_\alpha} \hat{\tau}_\alpha(t) \]

\[\hat{\tau}_\alpha(t) = \frac{1}{2l} \sum_{<i,j>}(\tilde{l}_i + \tilde{l}_j)r_{ij}F_{ij} \int_0^1 ds \chi(r - r_i + sr_{ij}) \]

\[M_{\ell\ell}(r, r') = \frac{\partial}{\partial r_\alpha} \frac{\partial}{\partial r'_\beta} \frac{1}{k_B} \int_0^{\tau_s} dt \langle \hat{\tau}_\alpha(r, t) \hat{\tau}_\beta(r', 0) \rangle_x \]

\[M_{\varepsilon\varepsilon}(r, r') = \frac{\partial}{\partial r_\alpha} \frac{\partial}{\partial r'_\beta} \frac{1}{k_B} \int_0^{\tau_s} dt \langle \hat{\tau}_\alpha^f(r, t) \hat{\tau}_\beta^f(r', 0) \rangle_x \]
approximate $\dot{\Pi}_f(t) = -\frac{\partial}{\partial r_\alpha} e^{iQ\mathcal{L}t} \hat{\tau}_\alpha \approx -\frac{\partial}{\partial r_\alpha} \hat{\tau}_\alpha(t)$ and $\dot{\Pi}_f(t) \approx -\frac{\partial}{\partial r_\alpha} \hat{j}_\alpha(t)$ with $\hat{j}_\alpha(t) = \frac{1}{2l} \sum_{<i,j>} (\tilde{l}_i + \tilde{l}_j) r_{ij} F_{ij} \int_0^1 ds \chi(r - r_i + sr_{ij})$

\[
\begin{align*}
M_{\ell\ell}(r, r') &= \frac{\partial}{\partial r_\alpha} \frac{\partial}{\partial r'_\beta} \frac{1}{k_B} \int_0^{\tau_s} dt \langle \hat{\tau}_\alpha(r, t) \hat{\tau}_\beta(r', 0) \rangle_x \\
M_{\varepsilon\varepsilon}(r, r') &= \frac{\partial}{\partial r_\alpha} \frac{\partial}{\partial r'_\beta} \frac{1}{k_B} \int_0^{\tau_s} dt \langle \hat{j}_\alpha(r, t) \hat{j}_\beta(r', 0) \rangle_x
\end{align*}
\]
Macroscopic balance equations

On macro scales: correlations are short-range in space \Rightarrow locality

\[
\frac{\partial}{\partial t} \varepsilon = \frac{\partial^2}{\partial r^2} \kappa \frac{1}{T} \\
\frac{\partial}{\partial t} \ell = \frac{\partial^2}{\partial r^2} \Gamma \lambda
\]
Towards constitutive equations of complex fluids derived from thermodynamically guided molecular simulations

Friction Matrix

Macroscopic balance equations

On macro scales: correlations are short-range in space \(\Rightarrow \) locality

\[
\frac{\partial}{\partial t} \varepsilon = \frac{\partial^2}{\partial r^2} \kappa \frac{1}{T}
\]

\[
\frac{\partial}{\partial t} \ell = \frac{\partial^2}{\partial r^2} \Gamma \lambda
\]
Towards constitutive equations of complex fluids derived from thermodynamically guided molecular simulations

Friction Matrix

Correlated fluctuations

\[M_{mm}(\mathbf{r}, \mathbf{r}') = \frac{1}{k_B} D(\mathbf{r}) \delta(\mathbf{r}' - \mathbf{r}) \]

\[D(\mathbf{r}) = \sum_i D(\mathbf{r}_i) \chi(\mathbf{r} - \mathbf{r}_i), \quad D(\mathbf{r}_i) = \int_0^{\tau_s} dt \left\langle \dot{u}_i(t) \dot{u}_i(0) \right\rangle \]

\[M_{m\alpha \varepsilon}(\mathbf{r}, \mathbf{r}') = -\frac{\partial}{\partial \mathbf{r}_{\mu}} \int_0^{\tau_s} dt \left\langle \sum_i \dot{u}_i, \alpha(t) J_{\mu}^f (\mathbf{r}', 0) \right\rangle \]
Towards constitutive equations of complex fluids derived from thermodynamically guided molecular simulations

Correlated fluctuations

\[M_{mm}(r, r') = \frac{1}{k_B} D(r) \delta(r' - r) \]

\[D(r) = \sum_i D(r_i) \chi(r - r_i), \quad D(r_i) = \int_0^{\tau_s} dt \langle \dot{u}_i(t) \dot{u}_i(0) \rangle \]

\[M_{m\alpha\varepsilon}(r, r') = -\frac{\partial}{\partial r'_\mu} \int_0^{\tau_s} dt \langle \sum_i \dot{u}_{i,\alpha}(t) \dot{j}_\mu^f(r', 0) \rangle \]

\[\Rightarrow \partial_t m = \Omega \times m + D \cdot \lambda - \nabla \cdot A \frac{1}{T} \]
Towards constitutive equations of complex fluids derived from thermodynamically guided molecular simulations

example: rigid ellipsoids in 2d

[A. Luo, L.M.C. Sagis, H.C. Öttinger, C. De Michele, PI, 2015]
Towards constitutive equations of complex fluids derived from thermodynamically guided molecular simulations

Friction Matrix

equation: rigid ellipsoids in 2d

Theoretical expectation:

\[
(M_{\text{rot}})_{ijkl} = \frac{1}{k_B n_p \tau_{\text{rot}}} \left(C_{ik} \delta_{jl} + C_{il} \delta_{jk} + C_{jl} \delta_{ik} + C_{jk} \delta_{il} - 4 C_{ijkl}^{(4)} \right)
\]

[A. Luo, L.M.C. Sagis, H.C. Öttinger, C. De Michele, PI, 2015]
Towards constitutive equations of complex fluids derived from thermodynamically guided molecular simulations

example: polymer melts

perform nonequilibrium MD simulations
choose gyration tensor as collective variable $x = \langle \Pi \rangle$

analyze fluctuations of Π:

$$F_k(t) = e^{QiLt}QiL\Pi_k$$

$$\approx \dot{\Pi}_k(t) - \dot{x}_k(t), \quad t \leq \tau_s$$

$$M_{kj}(x) = \int_0^{\tau_s} ds \langle F_k(0)F_j(s) \rangle_x$$

[PI, M. Kröger, H.C. Ottinger, 2009]
Towards constitutive equations of complex fluids derived from thermodynamically guided molecular simulations

Friction Matrix

hybrid simulations

non-equilibrium stationary state:
Monte-Carlo simulations in relevant ensemble $\rho^* = \rho_0 e^{-\lambda_k \Pi_k}$

known analytically

\[\langle \{ \Pi_k, H \} \rangle = -M_{kj} \lambda_j \]

determine λ consistently!

non-equilibrium molecular dynamics

\[M_{kj}(x) = \int_0^{\tau_s} ds \langle F_k(0)F_j(s) \rangle_x \]

[PI, M. Kröger, H.C. Öttinger, 2009]
Towards constitutive equations of complex fluids derived from thermodynamically guided molecular simulations

Friction Matrix

results
Open questions

- how successful is this approach for different systems?
- how-to identify collective variables?
- better approximation for friction matrix?
- what to do if time-scale separation does not hold?