Surface rheology of block-copolymer stabilized interfaces: a combined computational & experimental study. SNF project 200021_156106 at www.complexfluids.ethz.ch/snf15

PS Stephanou, M Kroger,
Assessment of the Tumbling-Snake Model against Linear and Nonlinear Rheological Data of Bidisperse Polymer Blends
POLYMERS 11 (2019) 376

We have recently solved the tumbling-snake model for concentrated polymer solutions and entangled melts in the academic case of a monodisperse sample. Here, we extend these studies and provide the stationary solutions of the tumbling-snake model both analytically, for small shear rates, and via Brownian dynamics simulations, for a bidisperse sample over a wide range of shear rates and model parameters. We further show that the tumbling-snake model bears the necessary capacity to compare well with available linear and non-linear rheological data for bidisperse systems. This capacity is added to the already documented ability of the model to accurately predict the shear rheology of monodisperse systems. Kroger, Martin/C-1946-2008 Kroger, Martin/0000-0003-1402-6714; STEPHANOU, PAVLOS/0000-0003-3182-0581 European Regional Development Fund; Republic of Cyprus through the Research Promotion Foundation [POST-DOC/0916/0197]; Swiss National Science Foundation [200021_156106] This work was co-funded by the European Regional Development Fund and the Republic of Cyprus through the Research Promotion Foundation (Project No.: POST-DOC/0916/0197), and by the Swiss National Science Foundation through grant 200021_156106. [hide]

Principal Investigators

Leonard Sagis (PL)
 Polymer Physics, ETH Zurich, Switzerland
 Wageningen University, Netherlands
Patrick Ilg (PL)
 Polymer Physics, ETH Zurich, Switzerland
 University of Reading, United Kingdom
Peter Fischer (Co-PI)
 Inst. Food, nutrition and health, ETH Zurich, Switzerland
Martin Kröger (PI)
 Polymer Physics, ETH Zurich, Switzerland

Secretary

Patricia Horn
 Polymer Physics, ETH Zurich, Switzerland

Involved Students

Ahmad Moghimikheirabadi
 Polymer Physics, ETH Zurich, Switzerland


Enjoy your reading

LMC Sagis, BX Liu, Y Li, J Essers, J Yang, A Moghimikheirabadi, E Hinderink, C Berton-Carabin, K Schroen,
Dynamic heterogeneity in complex interfaces of soft interface-dominated materials
SCIENTIFIC REPORTS 9 (2019) 2938

A Moghimikheirabadi, LMC Sagis, M Kroger, P Ilg,
Gas-liquid phase equilibrium of a model Langmuir monolayer captured by a multiscale approach
PHYSICAL CHEMISTRY CHEMICAL PHYSICS 21 (2019) 2295

SA Vasudevan, A Rauh, M Kroger, M Karg, L Isa,
Dynamics and Wetting Behavior of Core-Shell Soft Particles at a Fluid-Fluid Interface
LANGMUIR 34 (2018) 15370

YR Sliozberg, IC Yeh, M Kroger, KA Masser, JL Lenhart, JW Andzelm,
Ordering and Crystallization of Entangled Polyethylene Melts under Uniaxial Tension: A Molecular Dynamics Study
MACROMOLECULES 51 (2018) 9635

J Kirk, M Kroger, P Ilg,
Surface Disentanglement and Slip in a Polymer Melt: A Molecular Dynamics Study
MACROMOLECULES 51 (2018) 8996

A Moghimikheirabadi, LM Sagis, P Ilg,
Effective interaction potentials for model amphiphilic surfactants adsorbed at fluid-fluid interfaces
PHYSICAL CHEMISTRY CHEMICAL PHYSICS 20 (2018) 16238

A Ramirez-Hernandez, BL Peters, L Schneider, M Andreev, JD Schieber, M Muller, M Kroger, JJ de Pablo,
A Detailed Examination of the Topological Constraints of Lamellae-Forming Block Copolymers
MACROMOLECULES 51 (2018) 2110

ZQ Shen, HL Ye, C Zhou, M Kroger, Y Li,
Size of graphene sheets determines the structural and mechanical properties of 3D graphene foams
NANOTECHNOLOGY 29 (2018) 104001

ZQ Shen, HL Ye, M Kroger, Y Li,
Aggregation of polyethylene glycol polymers suppresses receptor-mediated endocytosis of PEGylated liposomes
NANOSCALE 10 (2018) 4545

ZQ Shen, HL Ye, M Kroger, Y Li,
Self-assembled core-polyethylene glycol-lipid shell nanoparticles demonstrate high stability in shear flow
PHYSICAL CHEMISTRY CHEMICAL PHYSICS 19 (2017) 13294

Z Shen, M Roding, M Kroger, Y Li,
Carbon Nanotube Length Governs the Viscoelasticity and Permeability of Buckypaper
POLYMERS 9 (2017) 115

CF Luo, M Kroger, JU Sommer,
Molecular dynamics simulations of polymer crystallization under confinement: Entanglement effect
POLYMER 109 (2017) 71

CF Luo, M Kroger, JU Sommer,
Entanglements and Crystallization of Concentrated Polymer Solutions: Molecular Dynamics Simulations
MACROMOLECULES 49 (2016) 9017

M Schuppler, FC Keber, M Kroger, AR Bausch,
Boundaries steer the contraction of active gels
NATURE COMMUNICATIONS 7 (2016) 13120

MK Singh, P Ilg, RM Espinosa-Marzal, ND Spencer, M Kroger,
Influence of Chain Stiffness, Grafting Density and Normal Load on the Tribological and Structural Behavior of Polymer Brushes: A Nonequilibrium-Molecular-Dynamics Study
POLYMERS 8 (2016) 254

YR Sliozberg, M Kroger, TL Chantawansri,
Fast equilibration protocol for million atom systems of highly entangled linear polyethylene chains
JOURNAL OF CHEMICAL PHYSICS 144 (2016) 154901

PS Stephanou, M Kroger,
Solution of the complete Curtiss-Bird model for polymeric liquids subjected to simple shear flow
JOURNAL OF CHEMICAL PHYSICS 144 (2016) 124905

Y Li, S Tang, M Kroger, WK Liu,
Molecular simulation guided constitutive modeling on finite strain viscoelasticity of elastomers
JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS 88 (2016) 204

ZQ Shen, DT Loe, JK Awino, M Kroger, JL Rouge, Y Li,
Self-assembly of core-polyethylene glycol-lipid shell (CPLS) nanoparticles and their potential as drug delivery vehicles
NANOSCALE 8 (2016) 14821

A Halperin, M Kroger, FM Winnik,
Poly(N-isopropylacrylamide) Phase Diagrams: Fifty Years of Research
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION 54 (2015) 15342

MK Singh, P Ilg, RM Espinosa-Marzal, M Kroger, ND Spencer,
Polymer Brushes under Shear: Molecular Dynamics Simulations Compared to Experiments
LANGMUIR 31 (2015) 4798


Selected conferences (co-)organized by project members

IWNET 2015
05 Jul - 10 Jul 2015, 7th International workshop on nonequilibrium thermodynamics (IWNET 2015), Hilvarenbeek, The Netherlands

IWNET 2018
01 Jul - 06 Jul 2018, 8th International Workshop on Nonequilibrium Thermodynamics (IWNET 2018), Sint-Michielsgestel, The Netherlands

learn more

login name
password

About this project

Complex fluid-fluid interfaces are interfaces in which the adsorbed species self-assemble into complex microstructures. Such interfaces are ubiquitous in nature, industrial processes, and consumer products, and can be found in living cells, nano- and microcapsules, vesicles, food emulsions, or foam. Compared to simple liquid-like interfaces (stabilized by low molecular weight surfactants), complex interfaces display significant viscoelasticity, with high values for their surface shear and dilatational moduli. Their stress-deformation behavior dominates the macroscopic dynamics of multiphase materials that contain such interfaces, and when this occurs those materials can be referred to as Interface-Dominated Materials (IDMs).

Complex interfaces can be formed by a wide range of surface active components, such as proteins, colloidal particles, polymers, lipids, or mixtures of these components. In this proposal we will focus on complex interfaces stabilized by amphiphilic multi-block copolymers. These polymers consist of alternating blocks of a hydrophilic repeating unit A, and a hydrophobic repeating unit B. Amphiphilic copolymers can form interfaces with exceptional mechanical properties. This makes them ideal candidates for application in highly stable emulsions, or encapsulation systems with high mechanical stability, for application in food and pharmaceutical products.

Amphiphilic copolymers may form 2d gels, 2d (soft) glass phases, 2d (liquid) crystalline phases, or even 2d metastable emulsions (phase-separated mixtures of immiscible copolymers) after adsorption. The type of structure formed depends on surface concentration, and length, distribution, rigidity, and hydrophobicity of the sub-blocks of the copolymer. The response of polymer stabilized fluid-fluid interfaces to deformations or gradients in temperature is often highly nonlinear. The nonlinearity in their response to perturbations is a result of changes in this interfacial microstructure, induced by the applied gradients. The effect of deformations on interfacial microstructure, and the effect of these changes on macroscopic dynamics of interface-dominated materials is still poorly understood. A more fundamental understanding of the nonlinear response of polymer interfaces, is essential for a targeted design of high-end polymer stabilized IDMs, such as encapsulation systems with environmental triggers, nanoparticles with structured interfaces, or foam and emulsions with extreme stability. In view of the widespread occurrence of IDMs, the study of dynamic mechanical properties of these interfaces is highly relevant for many disciplines, such as colloid and interface science, physical chemistry, polymer physics, pharmaceutical science, food science, coating technology, or soft matter physics.

The aim of this project is to characterize the microstructure and mechanical properties of interfaces stabilized by multi-block copolymers, using a multiscale multidisciplinary approach, which integrates state of the art computational methods with surface rheological experiments, and experimental interfacial structure evaluation. The computational modeling will be done using Monte Carlo (MC) and Molecular Dynamics (MD) simulations. We will measure both shear and dilatational surface properties, and the microstructure will be evaluated using various forms of microscopy (AFM, TEM, SEM), and neutron and X-ray reflectivity measurements. We will determine the mechanical properties and interfacial structure as a function of surface polymer concentration, chemical structure of the polymers (variation of number, size, and distribution of blocks), and degree of hydrophobicity and rigidity of the sub-blocks. A detailed insight in the dynamic behavior of copolymer interfaces will provide new insight in the macroscopic dynamic behavior of polymer stabilized interface-dominated materials (emulsions, foam, encapsulation systems, nanoparticles), and will allow a more targeted design of these systems with tailor made properties, tuned for specific industrial applications.

29 April 2024 mk