Applied Rheology: Publications

Contributions
matching >Tahakourt.A<

Follow the blue link(s) below for abstracts and full text pdfs .

  Author index
  Most cited recent articles
  Articles for free download
  Search conferences
N. Ouari, A. Kaci, A. Tahakourt, M. Chaouche
Rheological behaviour of fibre suspensions in non-Newtonian fluids

Appl. Rheol. 21:5 (2011) 54801 (10 pages)

The influence of short fibre addition on the rheological behaviour of different non-Newtonian fluids is investigated experimentally. Two types of suspending fluids are considered: power-law shear thinning fluids and yieldstress shear-thinning fluids. The power-law suspending fluids consist of aqueous xanthan solutions at different concentrations. The yield stress fluids are mortar tile adhesives characterised by different rheological parameters. The flow curves of the suspensions at different fibre contents are determined at controlled stresses. Three rheological parameters are inferred from the flow curves: the yield stress, the consistency and the fluidity index. The influence of the fibres on the rheological behaviour of purely shear-thinning fluids is found to be quite similar to what can be expected for Newtonian suspending fluids. On the other hand, addition of fibres to yield stress granular fluids leads to a qualitatively different change of their rheological properties compared to the case of Newtonian suspending fluids. In particular, it is found that the fibres can lead to the decrease of the apparent viscosity and the yield stress for low fibre concentrations in the case of granular suspending fluids. Our experimental findings indicate that the models for fibre suspensions in Newtonian solvents cannot be used straightforwardly in the case of fibre suspensions in granular materials such as building materials, ceramic materials, etc.

Cite this publication as follows:
Ouari N, Kaci A, Tahakourt A, Chaouche M: Rheological behaviour of fibre suspensions in non-Newtonian fluids, Appl. Rheol. 21 (2011) 54801.


© Applied Rheology 2019