Applied Rheology: Publications

Contributions
matching >Roy.A<

Follow the blue link(s) below for abstracts and full text pdfs .

  Author index
  Most cited recent articles
  Articles for free download
  Search conferences
Anshuman Roy, Ronald G. Larson
A Mean Flow Model for Polymer and Fiber Turbulent Drag Reduction

Appl. Rheol. 15:6 (2005) 370-389

We present a one-parameter model that fits quantitatively the mean velocity profiles from experiments and numerical simulations of drag-reduced wall-bounded flows of dilute solutions of polymers and non-Brownian fibers in the low and modest drag reduction regime. The model is based on a viscous mechanism of drag reduction, in which either extended polymers or non-Brownian fibers increase the extensional viscosity of the fluid and thereby suppress both small and large turbulent eddies and reduce momentum transfer to the wall, resulting in drag reduction. Our model provides a rheological interpretation of the upward parallel shift S+ in the mean velocity profile upon addition of polymer, observed by Virk. We show that Virk's correlations for the dependence on polymer molecular weight and concentration of the onset wall shear stress and slope increment on the Prandtl-Karman plot can be translated to two dimensionless numbers, namely an onset Weissenberg number and an asymptotic Trouton ratio of maximum extensional viscosity to zero-shear viscosity. We believe that our model, while simple, captures the essential features of drag reduction that are universal to flexible polymers and fibers, and, unlike the Virk phenomenology, can easily be extended to flows with inhomogeneous polymer or fiber concentration fields.

Corrigendum for this article >>

Cite this publication as follows:
Roy A, Larson RG: A Mean Flow Model for Polymer and Fiber Turbulent Drag Reduction, Appl. Rheol. 15 (2005) 370.


© Applied Rheology 2019