Applied Rheology: Publications

Contributions
matching >Misran.M<

Follow the blue link(s) below for abstracts and full text pdfs .

  Author index
  Most cited recent articles
  Articles for free download
  Search conferences
Premanarayani Menon, Yin Yin Teo, Misni Misran
Effect of diethylaminoethyl-dextran coated liposomes on the rheological properties of carbopol gel

Appl. Rheol. 28:6 (2018) 62616 (6 pages)

Liposomal gel has played an important role in administration of drugs via topical and transdermal routes. Incorporation of liposome into gel not only has overcome the liquid nature of liposomal dispersion but also helped to preserve the original structure of liposome. In this study, we formulated a liposomal gel consisting of Carbopol gel and a diethylaminoethyl dextran (DEAE-DX) coated liposome. The effect of coated and non-coated liposomes on the rheological properties of Carbopol gel was investigated. The rheological results indicated that incorporation of liposomes into Carbopol gel modified the viscoelastic and flow behaviour of the gel significantly. Apart from that, liposomal gel consisting of DEAE-DX coated liposomes exhibited more solid-like behavior compared to the non-coated liposomal gel. Incorporation of DEAE-DX coated liposomes increased the yield stress of liposomal gel compared to non-coated liposomes. This supports the findings obtained from the amplitude and frequency tests whereby addition of DEAE-DX enhanced the rigidity of the gel so that the resultant gel was more resistant to flow.

Cite this publication as follows:
Menon P, Teo YY, Misran M: Effect of diethylaminoethyl-dextran coated liposomes on the rheological properties of carbopol gel, Appl. Rheol. 28 (2018) 62616.

H.M. Lim, M. Misran
Colloidal and rheological properties of natural rubber latex concentrate

Appl. Rheol. 26:1 (2016) 15659 (10 pages)

Natural rubber latex concentrate (NRLC) is an important material used in manufacturing dipped products, yet thorough analysis of their colloidal and rheological properties are still lacking in these areas. In this work, the colloidal and rheological behaviour of the NRLC was studied. The NRLC particle size was in the range of 0.3 to 2 μm with narrow particle size distribution. The response of NRLC to an applied deformation was assessed through rheological experiments which include dynamic oscillation and steady state measurements. A change from liquid-like to solid-like behavior was observed as the volume fraction of the NRLC was increased above 0.48. The plastic viscosity and yield stress of the NRLC increased with increasing volume fraction according to the Bingham equation. The maximum packing volume fraction of the NRLC was found to be 0.75 with a diffused double layer thickness of 14 nm at φ=0.61.

Cite this publication as follows:
Lim H, Misran M: Colloidal and rheological properties of natural rubber latex concentrate, Appl. Rheol. 26 (2016) 15659.

Hsiao Wei Tan, Misni Misran
Effect of chitosan-modified fatty acid liposomes on the rheological properties of the polysaccharide-based gel

Appl. Rheol. 24:3 (2014) 34839 (9 pages)

Incorporation of liposome into gel is the most common approach for the preparation of topical and transdermal liposomal formulation, due to the ability of liposome to improve the drug deposition and permeation rate within the skin. In this study, the liposomal gel consisted of iota-carrageenan, carboxymethyl cellulose, and chitosan-coated-oleic acid liposome were prepared. The effect of liposomes on the rheological properties of the iota-carrageenan-carboxymethyl cellulose mix gel was evaluated. The rheological result indicated that the presence of the chitosan-coated-oleic acid liposomes in the gel had modified the viscoelastic and flow characteristics of the gel. The input energy from the oscillatory test could be stored more effectively in the elastic component of the liposomal gels, as compared to the original gel itself. This result showed that the liposomal gels exhibited greater elasticity and were more solid-like when compared with the original gel system. The complex viscosity of the liposomal gels was slightly higher than the original gel. The complex viscosity of the liposomal gels was also found to decrease with increasing frequency, indicating the shear thinning behavior of the liposomal gels. The lower Power Law Index (PDI) of the liposomal gels indicated a greater shear thinning behavior and better spreadability.

Cite this publication as follows:
Tan HW, Misran M: Effect of chitosan-modified fatty acid liposomes on the rheological properties of the polysaccharide-based gel, Appl. Rheol. 24 (2014) 34839.

H.W. Tan, M. Misran, S.K. Khoo
Viscoelastic Behavior of Olive Oil-in-Water Emulsion Stabilized By Sucrose Fatty Acid Esters

Appl. Rheol. 21:5 (2011) 54599 (9 pages)

The rheological behavior of the olive oil-in-water emulsions has been studied by varying the oil to water ratio as well as the surfactant concentration. The viscoelastic property of the olive oil emulsions was investigated with a cone-and-plate system, using a Bohlin C-VOR Rheometer. The obtained results indicated that the emulsions with greater oil and surfactant concentrations are highly packed systems with greater interdroplet interactions as well as higher critical strain. The viscoelastic property of the emulsions can be enhanced by increasing the oil concentration. The elastic modulus of the emulsions was always predominant over the viscous modulus, thereby emphasizing the elastic character of the above mentioned emulsions. The emulsion with a higher oil composition shows greater elasticity, which implies a strong dynamic rigidity of the emulsions. A high oil composition also enhanced the structural integrity as well as the interdroplet interactions of the emulsion.

Cite this publication as follows:
Tan H, Misran M, Khoo S: Viscoelastic Behavior of Olive Oil-in-Water Emulsion Stabilized By Sucrose Fatty Acid Esters, Appl. Rheol. 21 (2011) 54599.


© Applied Rheology 2019