Applied Rheology: Publications

Contributions
matching >Melito.HS<

Follow the blue link(s) below for abstracts and full text pdfs .

  Author index
  Most cited recent articles
  Articles for free download
  Search conferences
Helen S. Melito, Christopher R. Daubert, E. Allen Foegeding
Creep and large amplitude oscillatory shear behavior of whey protein isolate/.-carrageenan gels

Appl. Rheol. 22:6 (2012) 63691 (14 pages)

Dynamic oscillatory and creep tests are two common rheological methods used to determine viscoelastic properties. In the food industry, these tests are generally performed in the linear viscoelastic region, providing information on food structure and behavior over a range of timescales. However, this small-strain testing gives an incomplete picture of structural deformation and breakdown. Nonlinear oscillatory and creep testing, on the other hand, may yield a more complete fingerprint of food structural behavior. In this study, whey protein isolate (WPI)/k-carrageenan gels with different structures were studied under large amplitude oscillatory shear (LAOS) and creep tests to determine the impact of structure on nonlinear oscillatory and creep behavior, and to examine correlations between nonlinear oscillatory and creep parameters. Evaluated structural types comprised a homogeneous protein gel, a bicontinuous gel, in which both WPI and k-carrageenan exhibited a continuous network, and a carrageenan continuous gel. Creep data were fit to 4-element Burgers models for further analysis, and the predicted compliance values were found to be in agreement with experimental data (R2 ≥ 0.90). Carrageenan continuous gels showed the greatest degree of nonlinearity under LAOS (25 % strain), while homogeneous gels displayed the least. Nonlinear oscillatory data was found to correlate (R2 > 0.7, p < 0.05) with parameters used in the 4-element Burgers model. Hence, nonlinear viscoelastic behavior among materials may be evaluated by both creep data and nonlinear oscillatory data. However, nonlinear oscillatory data gives a quantitative measure of the type and extent of nonlinear behavior, while creep data indicates only the presence of nonlinear behavior. By combining information on structural behavior derived from nonlinear oscillatory and creep data, it is possible to determine nonlinear behavior over a wide range of timescales, yielding insight into structural deformation and breakdown under application of stress or strain at different rates.

Cite this publication as follows:
Melito HS, Daubert CR, Foegeding EA: Creep and large amplitude oscillatory shear behavior of whey protein isolate/.-carrageenan gels, Appl. Rheol. 22 (2012) 63691.


© Applied Rheology 2019