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Nonequilibrium thermodynamics is conceived in a general sense

as a statistical closure of a complex dynamical system.

• A set of resolved (relevant, macroscopic, slow) variables is identified.

• All unresolved (irrelevant, microscopic, fast) variables are described by a
statistical (probabilistic, stochastic) model.

• A closed reduced dynamics approximates (estimates, predicts) the
expected (mean, average) evolution of the resolved variables.

The approach discussed in this lecture uses

1. An underlying dynamics that is Hamiltonian with n degrees of freedom.

2. Any independent set of m resolved variables; typically, m� n.

3. Canonical statistical models of the unresolved fluctuations.

4. An optimization principle to construct the closed reduced equations.

Key idea: The reduced model finds the best fit of all feasible

evolutions of the resolved variables to the underlying dynamics.



Dynamical system and statistical model

The microstate is a point z = (q1, p1, . . . , qn, pn) ∈ Γ = R2n.

The microscopic dynamics is canonical Hamiltonian:

dqj

dt
=
∂H

∂pj
,

dpj

dt
= −

∂H

∂qj
.

Every dynamical variable F : Γ → R evolves under

dF

dt
= {F,H} =

∑
j

∂F

∂qj

∂H

∂pj
−
∂F

∂pj

∂H

∂qj

Examples of interest for reduction:

1. A few heavy particles coupled to a “bath” of many light particles.
2. A set of wave modes in a nonlinear wave system interacting with a
“fluctuating” wave field.
3. A large-scale coherent structure immersed in a “background” of small-scale
turbulent fluctuations.

Sometimes a non-canonical Hamiltonian structure is convenient.



An ensemble of microscopic trajectories, z(t), is described by a

probability density, ρ(z, t), governed by Liouville’s equation:

∂ρ

∂t
+ Lρ = 0 , with L · = { · , H}

For every dynamical variable F ,

d

dt
〈F | ρ(·, t)〉 = 〈LF | ρ(·, t)〉 ; 〈F | ρ〉 .

=
∫
Γ
F (z)ρ(z) dz .

But the exact solution, ρ(t) = e−tLρ(0), is not really useful,

being too intricate to analyze and too expensive to compute.

Instead impose an approximation to ρ(z, t) that is parametrized

by the statistical averages of some selected resolved variables

A = (A1, . . . , Am) ( each Ai : Γ → R )



Canonical statistical model

A natural choice of (nonequilibrium) trial probability densities is

the parametric family

ρ̃(z, λ) = exp[λ∗A(z) − φ(λ)] ρeq(z)

where

φ(λ) = log
∫
Γ
exp(λ∗A(z)) ρeq(z) dz for λ ∈ Rm

ρeq is a fixed equilibrium density on Γ; that is, Lρeq = 0.

For instance,

ρeq(z) = Z(β)−1 exp(−βH(z)) [Gibbs canonical ensemble].

λ = (λ1, . . . , λm) is the parameter vector for model.

Here and throughout, λ∗A = λ1A1 + . . .+ λmAm .



Two interpretations of ρ̃(z, λ) = exp[λ∗A(z) − φ(λ)] ρeq(z)

Statistics: ρ̃ defines a parametric statistical model; specifically,

an exponential family with natural parameter λ. The vector

A of resolved variables is a minimal sufficient statistic for this

parametric model.

Physics: Each ρ̃ is a quasi-equilibrium/canonical ensemble.

It maximizes (relative) entropy

S(ρ) = −〈 log
ρ

ρeq
| ρ 〉

subject to the expected value of the vector of resolved variables

〈A | ρ 〉 = a , 〈1 | ρ 〉 = 1 .

The entropy function for this model is s(a) = S(ρ̃(·, λ)) and

there is a one-to-one correspondence between a and λ :

a =
∂φ

∂λ
, λ = −

∂s

∂a
[Legendre transform].



Adiabatic closure

A naive way to evolve the parameter λ(t) ∈ Rm is to impose

A1, . . . , Am moments of the Liouville equation exactly:

d

dt
〈A|ρ̃ 〉 − 〈LA|ρ̃ 〉 =

∫
Γ
A (

∂

∂t
+ L) ρ̃ dz = 0 .

But this closed reduced dynamics is reversible:

d

dt
S(ρ̃) = 0 [ entropy is conserved ]

This memoryless closure neglects the influence of the unresolved

fluctuations on the evolution of the resolved variables.

Statistical physicists (Zubarev 1970s and others) advocate using

“nonequilibrium statistical operators” with decaying memory

ρ(t) = exp

(∫ +∞

0
λ(t− τ) eτ(L−α)Aαdτ − ψ[λ](t)

)
ρeq



Best-fit closure – a different approach

Retain the quasi-equilibrium trial densities, and evaluate their

Liouville residual along any feasible parameter path λ(t):

R
.
= (

∂

∂t
+ L) log ρ̃(λ(t)) = λ̇(t)∗(A− a(t)) + λ(t)∗LA

The ensemble-averaged evolution of any dynamical variable F

along such a path of trial densities:

d

dt
〈F | ρ̃(λ(t)) 〉 − 〈LF | ρ̃(λ(t)) 〉 = 〈FR | ρ̃(λ(t)) 〉

The statistic R = R(z;λ, λ̇) represents the rate of information

loss locally at state λ and velocity λ̇ :

At any sample microstate z ∈ Γ, the information for discriminating between
the exact density and the trial density after a time increment ∆t is:

log
e−(∆t)Lρ̃(z, λ(t))

ρ̃(z, λ(t+ ∆t))
= − (∆t)R(z;λ(t), λ̇(t)) + O( (∆t)2 ) as ∆t→ 0.



Closure concept: Find paths λ(t) in the statistical parameter
space that are “best-fit” to the Liouville equation in the sense
that they minimize R in some time-integrated norm.

Separate R into its orthogonal components along the resolved
and unresolved subspaces of L2(Γ, ρ̃(λ)):

R(λ, λ̇) = PλR + QλR , where

PλR = [ λ̇− C(λ)−1 f(λ) ]∗(A− a) ,

QλR = λ∗(QλLA)

Cij(λ) = 〈 (Ai − ai)(Aj − aj) | ρ̃(λ) 〉 [Fisher information matrix].
fi(λ) = 〈LAi | ρ̃(λ) 〉 [Reversible term in flux].

The lack-of-fit cost function:

2L(λ, λ̇) = 〈 (PλR)2| ρ̃(λ) 〉 + 〈 (WλQλR)2| ρ̃(λ) 〉 .

The bounded linear operator Wλ on L2(Γ) weights the unresolved
component QλR relative to the resolved component PλR.
Wλ contains all the adjustable parameters in the closure.



The best-fit closure minimizes the lack-of-fit cost functional

over all feasible parameter paths λ(t), 0 ≤ t < +∞:

Minimize
∫ +∞

0
L(λ, λ̇) dt over paths λ(t) with λ(0) = λ0 .

The initial state λ0 6= 0 is specified at time t = 0.

The predicted (estimated) macrostate at each time t > 0

corresponds to the extremal parameter vector λ̂(t).

The predicted evolution λ̂(t) represents a relaxation from

the nonequilibrium state λ0 6= 0 towards equilibrium λeq = 0.

The evolving trial probability density ρ̃(·, λ̂(t)) is the best-fit

estimate of the true density ρ(t) = e−tLρ̃(λ0) .



The closed reduced equations

Introduce the value function (principal function or “action”)

of Hamilton-Jacobi theory:

v(λ0) = min
λ(0)=λ0

∫ +∞

0
L(λ, λ̇) dt ,

which assigns an optimal lack-of-fit to every state λ0 ∈ Rm.

v(λ) solves the (stationary) Hamilton-Jacobi equation

H
(
λ,−

∂v

∂λ

)
= 0 ,

where H(λ, µ) is the Legendre transform of L(λ, λ̇):

µ =
∂L
∂λ̇

= C(λ)λ̇− f(λ)

H = λ̇∗µ− L =
1

2
µ∗C(λ)−1µ+ f(λ)∗C(λ)−1µ −

1

2
λ∗D(λ)λ

and

Dij(λ) = 〈 (WλQλLAi)(WλQλLAj) | ρ̃(λ) 〉 .



Along an extremal λ̂(t) the corresponding µ̂(t) satisfies

µ̂(t) = −
∂v

∂λ
(λ̂(t)) .

Replacing µ by its expression in terms of λ̇ and λ produces the

closed reduced equations (first-order DEs in t):

dâ

dt
= C(λ̂)

dλ̂

dt
= f(λ̂)−

∂v

∂λ
(λ̂) , with λ̂ = −

∂s

∂a
(â) .

Recall that

a = 〈A | ρ̃(λ) 〉 , C(λ) = 〈 (A− a)(A− a)∗ | ρ̃(λ) 〉 , f(λ) = 〈LA | ρ̃(λ) 〉.

Physical interpretation of canonically conjugate λ and µ:

−λi is the thermodynamic force (affinity) associated with Ai.

µi = − ∂v
∂λi

is the corresponding thermodynamic flux.

−
∑
i λ
iµi =

∑
i λ
i ∂v
∂λi

is the entropy production.



Relation to GENERIC Nonequilibrium Thermodynamics

Various authors (Morrison, Beris and Edwards, Grmela and Öttinger,

and others) have proposed a generic format for nonequilibrium

macrodynamics:

da

dt
= L(a)

∂E

∂a
+ M(a)

∂S

∂a

where

E = energy, S = entropy, L = −L∗, M = M∗ ≥ 0 .

The first term is reversible, a generalized Hamiltonian vector field.
The second term is irreversible, a generalized gradient vector field.

Our statistical optimization principle produces expressions for

these reversible and irreversible terms:

L(a) = 〈 {A,A∗} 〉 ,
∂E

∂a
=
∂h

∂a
(s, a) with h(s, a) = 〈H〉 .

M(a)
∂S

∂a
= −

∂v

∂λ
.



Near equilibrium (linear-response) regime

For small |λ|, and a = 〈A|ρ̃ 〉 ≈ 〈A〉eq = 0, the governing equations

of the closed reduced model simplify:

dâ

dt
= ( J − M )C−1 â ,

JC−1M − MC−1J + MC−1M = D ,

where â = Cλ̂ and

C = 〈AA∗〉eq , J = 〈(LA)A∗〉eq, D = 〈 (WQLA) (WQLA)∗ 〉eq .

Properties in the near-equilibrium case:

v(λ) =
1

2
λ∗Mλ , hence M

∂s

∂a
= −

∂v

∂λ
[standard GENERIC].

dŝ

dt
= 2 v(λ̂(t)) =

∫ +∞

t
‖R(λ̂, dλ̂/dt′)‖2W dt′ [entropy production].



Nonlinear closed reduced equations

The best-fit closure applies beyond the near-equilibrium regime.

The governing equations are

dâ

dt
= f(λ̂)−

∂v

∂λ
(λ̂) ,

1

2

(
∂v

∂λ

)∗
C(λ)−1

(
∂v

∂λ

)
+ f(λ)∗C(λ)−1

(
∂v

∂λ

)
=

1

2
λ∗D(λ)λ ,

along with the equilibrium conditions

v(0) = 0 ,
∂v

∂λ
(0) = 0 .

Entropy production inequality valid wherever v(λ) is convex:

dŝ

dt
=

m∑
i=1

λ̂i
∂v

∂λi
(λ̂) ≥ v(λ̂) ≥ 0 .



Application to truncated Burgers-Hopf “turbulence”

Model devised and used by Majda etal. to test stochastic mode reductions.

Project Burgers-Hopf equation onto n Fourier modes, u(x, t) =
∑

k zk(t) e
ikx :

∂u

∂t
+

∂

∂x

(
1

2
u2

)
= 0, projects to

dzk

dt
+ ik

∑
k1+k2=k

zk1
zk2

= 0 (−n ≤ k ≤ n ).

This Hamiltonian dynamics is ergodic and mixing for n > 20, with a
Gaussian canonical density ρeq ∝ exp(−β

∑
k |zk|2/2 ).

Reduce to m� n resolved modes, using m lowest modes, Ak = zk.

Trial densities are also Gaussian, and consequently nonlinear closed reduced
equations are accessible analytically. Explicit closure:

dâk

dt
+ ik

∑
k1+k2=k

[ 1 + ω(k1, k2)] âk1
âk2

= −
√
γ

β
|k| âk ,

with ω(k1, k2) =
k1|k1|+ k2|k2| − (k1 + k2)

(k1 + k2)(|k1|+ |k2|+ k1 + k2)
[ modified nonlinearity ],

and γ > 0 [ single closure parameter scales fractional diffusion].

Closure predictions validated by large ensemble (106 samples) simulations.
Results in arXiv 1206.6545.



More to say

1. Nonstationary version of best-fit closure – “plateau effect.”

2. Relate weight operator W to Mori-Zwanzig or Green-Kubo.

Much more to do

1. Need good applied problems. Suggestions, please!

2. Use data or simulations to estimate parameters in W .

3. Criterion for choice of resolved variables A1, . . . , Am and m.

4. Develop similar theory for forced systems and nonequilibrium

steady states.


