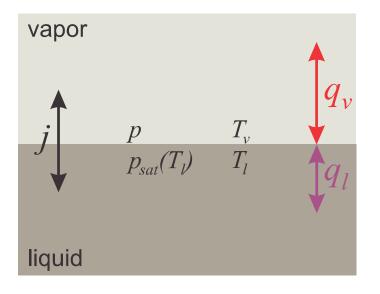
On the (im-) possibility of cold to warm distillation

Henning Struchtrup

University of Victoria, Canada


Signe Kjelstrup & Dick Bedeaux

NTNU Trondheim

University Mechanical Engineering

Non-eq. condensation/evaporation [e.g., Kjelstrup & Bedeaux 2010]

mass flux j, Fourier heat flux $q = -\kappa \frac{\partial T}{\partial x}$

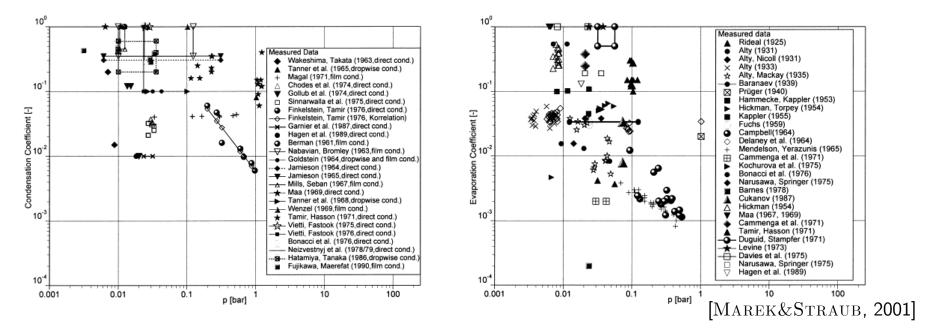
Interface conditions (linearized): dimensionless resistivities $\hat{r}_{\alpha\beta}$

$$\begin{bmatrix} \frac{p_{sat}(T_l) - p}{\sqrt{2\pi RT_l}} \\ -\frac{p_{sat}(T_l)}{\sqrt{2\pi RT_l}} \frac{T_v - T_l}{T_l} \end{bmatrix} = \begin{bmatrix} \hat{r}_{11} & \hat{r}_{12} \\ & \\ \hat{r}_{21} & \hat{r}_{22} \end{bmatrix} \begin{bmatrix} j \\ \\ \frac{q_v}{RT_l} \end{bmatrix}$$

Onsager symmetry: $\hat{r}_{21} = \hat{r}_{12}$ **Questions:** a) values of $\hat{r}_{\alpha\beta}$?

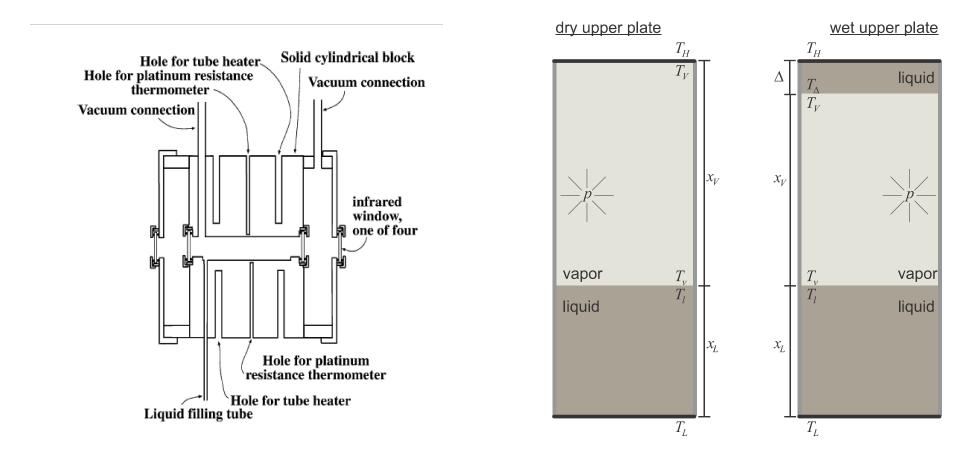
positive entropy generation: $\hat{r}_{11} \ge 0$, $\hat{r}_{22} \ge 0$, $\hat{r}_{11}\hat{r}_{22} - \hat{r}_{12}\hat{r}_{21} \ge 0$

b) when must non-eq. interface be considered?


Interface resitivities

Kinetic theory prediction condensation coefficient $\psi \leq 1$

$$\hat{r}_{kin.\ theory} = \begin{bmatrix} \frac{1}{\psi} - 0.40044 & 0.126\\ 0.126 & 0.294 \end{bmatrix}$$


Compare to Hertz–Knudsen–Schrage equation

$$j = \frac{2\mathcal{K}_{C/E}}{2 - \mathcal{K}_{C/E}} \left(\frac{p_{sat}\left(T_{l}\right)}{\sqrt{2\pi RT_{l}}} - \frac{p_{v}}{\sqrt{2\pi RT_{v}}}\right)$$

 $\mathcal{K}_{C/E}$ — condensation/evaporation coefficients $\hat{r}_{11} \simeq \frac{2-\mathcal{K}_{C/E}}{2\mathcal{K}_{C/E}}$: $\mathcal{K}_{C/E} \in (10^{-3}, 1) \implies \hat{r}_{11} \in (\frac{1}{2}, 10^3)$

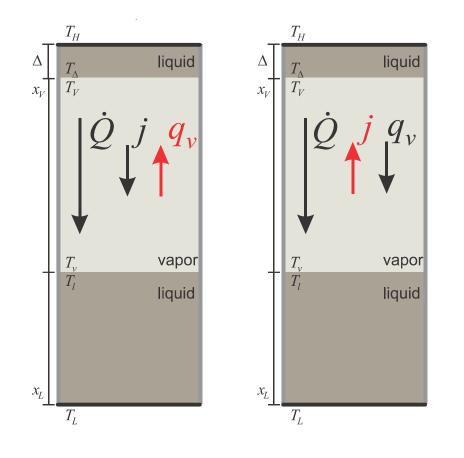
Phillips-Onsager cell [Phillips et al., since 2002]

control: T_L , T_H measure: $p(T_H)$

compute: Phillips' heat of transfer

$$Q^* = -\frac{T_L}{p_{sat}\left(T_L\right)} \frac{dp\left(T_H\right)}{dT_H}$$

T - difference is the sole driving force!!


non-obvious transport modes (wet upper plate)

total heat flux in vapor: $\dot{Q} = jh_{fg} + q_v$

inverted *T*-profile

cold to warm distillation

heat \dot{Q} and mass j go from warm to cold but Fourier flux q_v points from cold to warm heat \dot{Q} goes from warm to cold but mass j goes from cold to warm

1-D model of Phillips-Onsager cell

Interface conditions (linearized): dimensionless resistivities $\hat{r}_{\alpha\beta}$

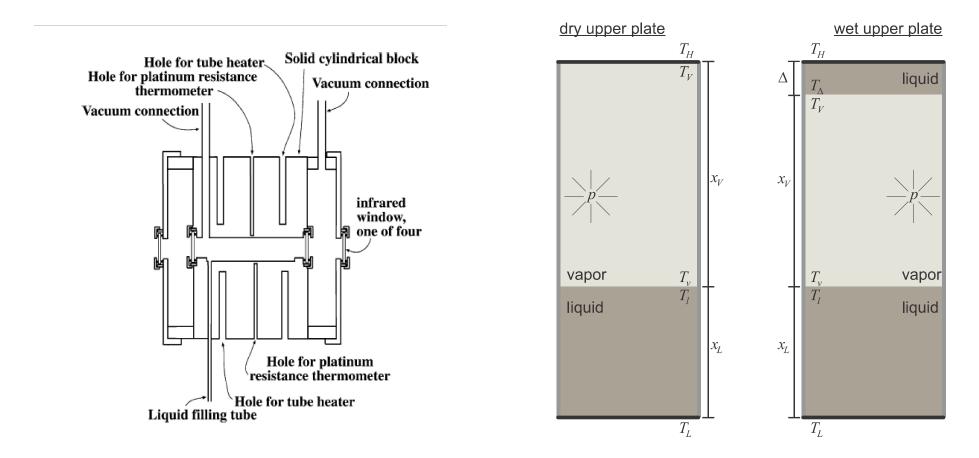
$$\begin{bmatrix} \frac{p_{sat}(T_l) - p}{\sqrt{2\pi RT_l}} \\ -\frac{p_{sat}(T_l)}{\sqrt{2\pi RT_l}} \frac{T_v - T_l}{T_l} \end{bmatrix} = \begin{bmatrix} \hat{r}_{11} & \hat{r}_{12} \\ & \\ \hat{r}_{21} & \hat{r}_{22} \end{bmatrix} \begin{bmatrix} j \\ \\ \frac{q_v}{RT_l} \end{bmatrix}$$

Onsager symmetry:

 $\hat{r}_{21} = \hat{r}_{12}$ positive entropy generation: $\hat{r}_{11} \ge 0$, $\hat{r}_{22} \ge 0$, $\hat{r}_{11}\hat{r}_{22} - \hat{r}_{12}\hat{r}_{21} \ge 0$

Mass and energy balances (1-D): $\alpha = l, v$ (liquid, vapor)

$$\frac{dj}{dx} = 0 \quad , \quad \frac{d\dot{Q}}{dx} = \frac{d}{dx} \left[jh_{\alpha} + q_{\alpha} \right] = 0$$


mass flux: j

total energy flux: \dot{Q}

Fourier heat flux: $q_{\alpha} = -\kappa_{\alpha} \frac{\partial T}{\partial x}$

enthalpy: h_{α}

Phillips-Onsager cell [Phillips et al., since 2002]

control: T_L , T_H **measure:** $p(T_H)$ **compute: Phillips' heat of transfer**

$$Q^{*} = -\frac{T_{L}}{p_{sat}\left(T_{L}\right)} \frac{dp\left(T_{H}\right)}{dT_{H}}$$

observation of cold to warm distillation

Dry upper plate (linearized) [HS&SK&DB 2012]

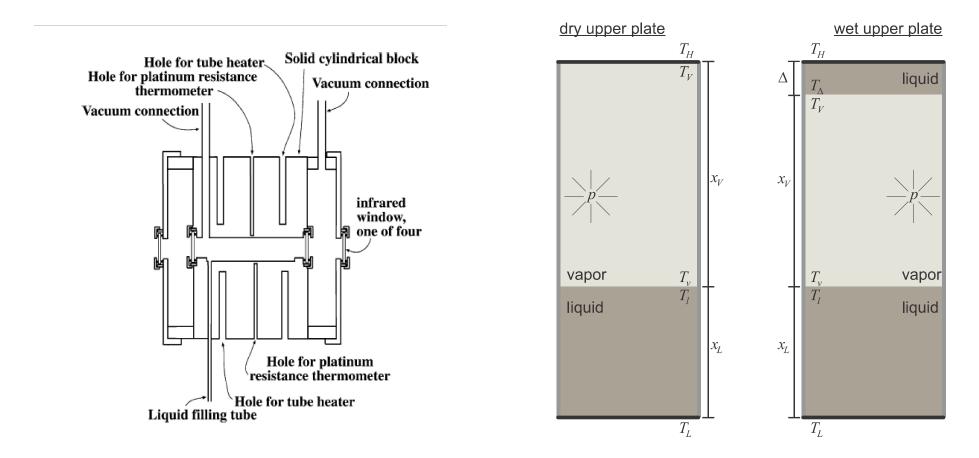
no convection: j = 0, conductive heat flux: $\dot{Q} = q_v = q_l = const$

$$\dot{Q} = -\frac{p_{sat}\left(T_L\right)R}{\sqrt{2\pi RT_L}}\mathcal{Q}_d\left(T_H - T_L\right)$$

cell conduction coefficient (dim.less)

$$\frac{1}{\mathcal{Q}_d} = \frac{\kappa_V x_L}{\kappa_L \lambda_0} + \frac{x_V}{\lambda_0} + \hat{r}_{22} + \frac{2-\chi}{4\chi}$$

microscopic reference length


$$\lambda_0 = \frac{\kappa_V \sqrt{2\pi R T_L}}{p_{sat} \left(T_L\right) R} \lesssim 0.05 \,\mathrm{mm}$$

Phillips' heat of transfer $Q_{dry}^* = -\frac{T_L}{p_{sat}(T_L)} \frac{dp(T_H)}{dT_H}$

$$Q_{\rm dry}^* = -\frac{\frac{h_{fg}^L}{RT_L}\frac{\kappa_V x_L}{\kappa_L \lambda_0} + \hat{r}_{12}}{\frac{\kappa_V x_L}{\kappa_L \lambda_0} + \frac{x_V}{\lambda_0} + \hat{r}_{22} + \frac{2-\chi}{4\chi}}$$

only small cells $\frac{x_V}{\lambda_0} \lesssim \left\{ \hat{r}_{12}, \hat{r}_{22}, \frac{2-\chi}{4\chi} \right\}$ affected by resist. $\hat{r}_{\alpha\beta}$, acc. coeff. χ

Phillips-Onsager cell [Phillips et al., since 2002]

control: T_L , T_H **measure:** $p(T_H)$ **compute: Phillips' heat of transfer**

$$Q^{*} = -\frac{T_{L}}{p_{sat}\left(T_{L}\right)} \frac{dp\left(T_{H}\right)}{dT_{H}}$$

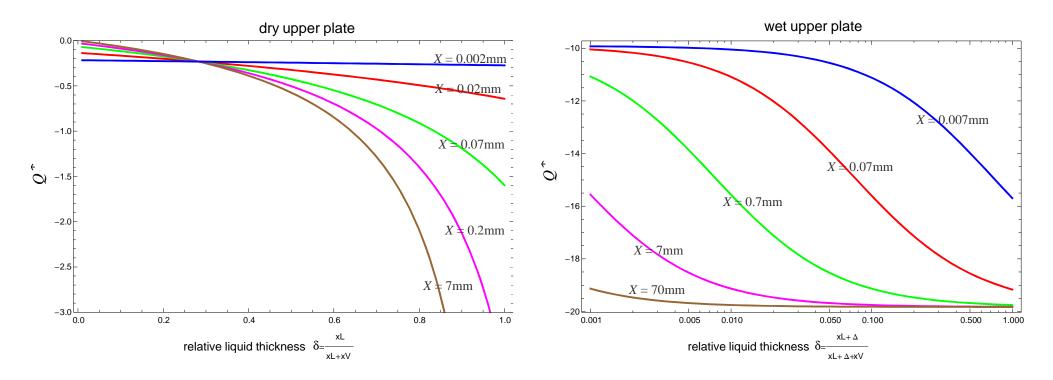
observation of cold to warm distillation

Wet upper plate (linearized) [HS&SK&DB 2012]

convective and conductive transport

$$j = \frac{A}{2\left[C+D\right] + EB} \begin{bmatrix} -\frac{p_{sat}\left(T_L\right)}{T_L\sqrt{2\pi RT_L}}\left(T_H - T_L\right) \end{bmatrix}$$
$$\dot{Q} = \frac{B}{2\left[C+D\right] + EB} \begin{bmatrix} -\frac{p_{sat}\left(T_L\right)R}{\sqrt{2\pi RT_L}}\left(T_H - T_L\right) \end{bmatrix}$$

Phillips' heat of transfer $Q_{\text{wet}}^* = -\frac{T_L}{p_{sat}(T_L)} \frac{dp(T_H)}{dT_H}$


$$Q_{\text{wet}}^{*} = \frac{h_{fg}^{L}}{RT_{L}} \frac{1}{1 + \frac{B + \frac{x_{L} + \Delta}{\Delta} \left[\frac{C + D}{E}\right]}{\frac{x_{L}}{\Delta}B + \frac{x_{L} + \Delta}{\Delta} \left[\frac{C + D}{E}\right]}}$$

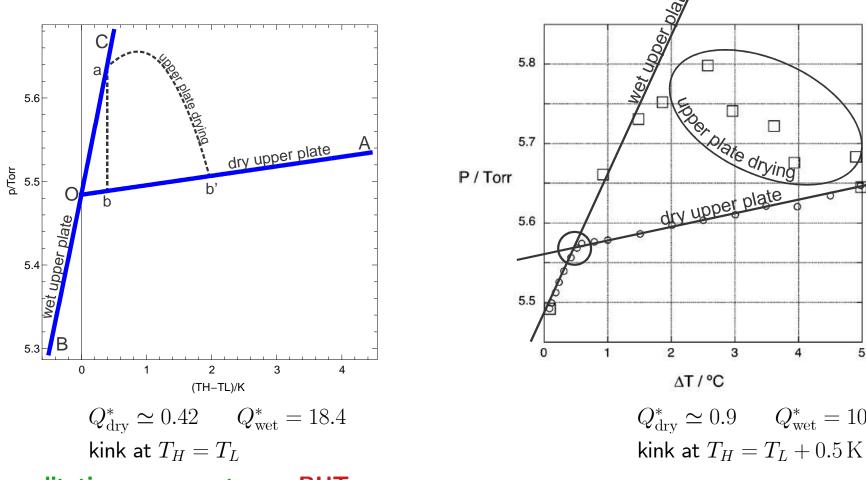
where

$$\begin{split} A &= \hat{Z} \frac{h_{fg}^L}{RT_L} \left(\frac{1}{2} \frac{x_V}{\lambda_0} + \hat{r}_{22} \right) - \hat{r}_{12} ,\\ B &= \hat{Z} \frac{h_{fg}^L}{RT_L} \frac{h_{fg}^L}{RT_L} \left(\frac{1}{2} \frac{x_V}{\lambda_0} + \hat{r}_{22} \right) - \left(\hat{Z} + 1 \right) \frac{h_{fg}^L}{RT_L} \hat{r}_{12} + \hat{r}_{11} \\ C &= \hat{r}_{11} \frac{1}{2} \frac{x_V}{\lambda_0} \ge 0 , \quad D = \hat{r}_{11} \hat{r}_{22} - \hat{r}_{12}^2 \ge 0 , \quad E = \frac{\kappa_V x_L + \Delta}{\kappa_L} \ge 0 \\ \frac{d \ln p_{sat}}{d \ln T} = \hat{Z} \frac{h_{fg}^L}{RT_L} \end{split}$$
only small cells $\frac{x_V}{\lambda_0} \lesssim \{\hat{r}_{12}, \hat{r}_{22}\}$ affected by resistivities $\hat{r}_{\alpha\beta}$

Heat of transfer [HS&SK&DB 2012]

$Q^* = -\frac{T_L}{p_{sat}(T_L)} \frac{dp(T_H)}{dT_H}$ is system property Q^*_{drv} , Q^*_{wet} depend strongly on thickness of bulk layers

X - cell thickness


experiment: $X \simeq 7 \,\mathrm{mm}$, $\delta \simeq 0.5$

narrow cells (small X): dominated by interfacial processes, small Q^*_{dry} , Q^*_{wet} wide cells (large X): dominated by bulk processes, large Q^*_{dry} , Q^*_{wet} present measurements not sufficiently exact to determine resistivities $\hat{r}_{\alpha\beta}$!

Pressure and heat of transfer [HS&SK&DB 2012]

model (kinetic theory coefficients):

Poer plate drying dry upper plate 4 5 $Q_{\rm dry}^* \simeq 0.9$ $Q_{\rm wet}^* = 10$

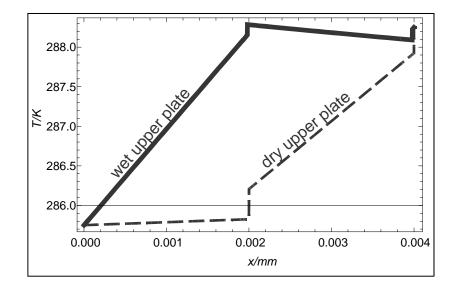
qualitative agreement . . . BUT

quantitative disagreement due to:

- uncertainties in *T*-measurement ??
- different p_{sat} at upper plate (conditioning, wetting surface, ...) ??

• values of
$$\hat{r}_{\alpha\beta}$$
 ??

Wet upper plate: Inverted temperature profile [Pao 1971] vapor conductive heat flow opposite total energy flow:


$$j < 0$$
, $\dot{Q} < 0$, $q_v = \dot{Q} - jh_{fg}^L > 0$

equivalent to

$$\hat{Z} \frac{h_{fg}^L}{RT_L} > \frac{\hat{r}_{11}}{\hat{r}_{12}}$$

water: $7 < \hat{Z} \frac{h_{fg}^L}{RT_L} = \frac{d \ln p_{sat}}{d \ln T} < 20$ between critical and triple points reported values $\frac{\hat{r}_{11}}{\hat{r}_{12}} \simeq 8 - 10$

inverted temperature profile expected in Phillips-Onsager cell

. . . but look at the scale . . .

Wet upper plate: Cold to warm mass transfer [HS&SK&DB 2012]

convective vapor mass flow opposite total energy flow:

$$j > 0$$
, $\dot{Q} < 0$, $q_v = \dot{Q} - jh_{fg}^L < 0$

equivalent to:

$$0 < x_V < \frac{2\lambda_0 \hat{r}_{22}}{\hat{Z} \frac{h_{fg}^L}{RT_L}} \left[\frac{\hat{r}_{12}}{\hat{r}_{22}} - \hat{Z} \frac{h_{fg}^L}{RT_L} \right]$$

kinetic theory predicts:

$$\frac{r_{12}}{\hat{r}_{22}} = 0.43$$

 $\overline{}$

triple point:

$$\hat{Z} \frac{h_{fg}^L}{RT_L} \simeq 20$$

 $x_V < 0$

cold to warm distillation impossible with kinetic theory data!!

Wet upper plate: Cold to warm mass transfer [HS&SK&DB 2012] if observation true, what does it mean for coefficients $r_{\alpha\beta}$?

rewrite previous criterion, entropy condition $\hat{r}_{11}\hat{r}_{22} - \hat{r}_{12}\hat{r}_{12} \ge 0$:

$$\hat{r}_{12} > \hat{Z} \frac{h_{fg}^L}{RT_L} \left(\frac{x_V}{2\lambda_0} + \hat{r}_{22} \right) \quad , \quad \hat{r}_{11} \ge \frac{\hat{r}_{12}^2}{\hat{r}_{22}}$$

combine for necessary criterion for evaporation resitivitiy

$$\hat{r}_{11} \ge \left(\hat{Z}\frac{h_{fg}^L}{RT_L}\right)^2 \left(\frac{1}{4\hat{r}_{22}}\left(\frac{x_V}{\lambda_0}\right)^2 + \frac{x_V}{\lambda_0} + \hat{r}_{22}\right)$$

rhs has minimum at $\hat{r}_{22|\min} = rac{1}{2} rac{x_V}{\lambda_0}$

minimum required evaporation resitivitiy

$$\hat{r}_{11} > 2\left(\hat{Z}\frac{h_{fg}^L}{RT_L}\right)^2 \frac{x_V}{\lambda_0} = \frac{x_V}{5.7 \times 10^{-8} \,\mathrm{m}} \simeq 6.1 \times 10^4$$

recall: $\hat{r}_{11} \simeq \frac{2 - \mathcal{K}_{C/E}}{2\mathcal{K}_{C/E}} \in \left(\frac{1}{2}, 10^3\right)$

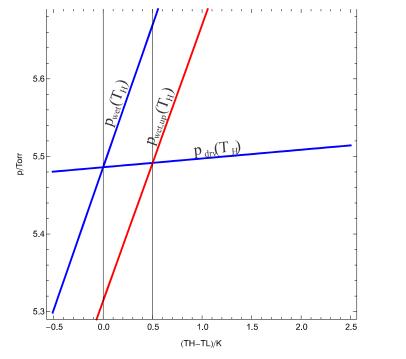
 \implies impossible for Phillips' data $x_V = 3.5 \text{ mm!!}$

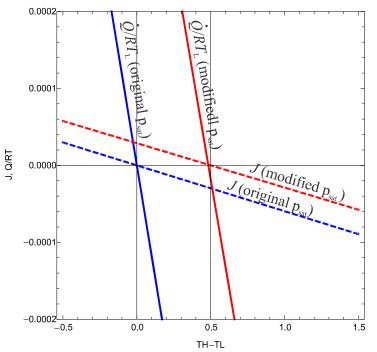
Conclusions

- interface resistivities $\hat{r}_{\alpha\beta}$ relevant mainly for microscopic flows
- experimental determination of resistivities $\hat{r}_{\alpha\beta}$ requires:
 - carefully instrumented microscopic devices
 - complete numerical simulation of device
- refined description of bulk phases might be necessary

 \implies kinetic theory, extended hydrodynamics etc

- molecular dynamics gives insight into resistivities [SK&DB]
- Phillips-Onsager cell measures (macroscopic) system property Q^* \implies only mildly affected by resistivities $\hat{r}_{\alpha\beta}$
- cold to warm distillation appears to be impossible!!


 \implies requires extreme values of $\hat{r}_{\alpha\beta}$


Effect of upper plate saturation pressure [HS&SK&DB 2012]

saturation pressure at the upper plate

$$p_{sat}^{\rm up}\left(T_{\Delta}\right) = p_{sat}^{\rm up}\left(T_{L}\right) \left[1 + \frac{h_{fg}^{L,{\rm up}}}{RT_{L}} \frac{T_{\Delta} - T_{L}}{T_{L}}\right] = P_{\rm up}p_{sat}\left(T_{L}\right) \left[1 + H_{\rm up}\frac{h_{fg}^{L}}{RT_{L}} \frac{T_{\Delta} - T_{L}}{T_{L}}\right] .$$
(1)

where $P_{\rm up}$ and $H_{\rm up}$ are the ratios of saturation pressure and enthalpy between the wetted upper plate and pure water, at T_L .

