## Resonant Response in Nonequilibrium Stationary States

Raúl Salgado-García

Department of physics, Facultad de Ciencias Universidad Autónoma del Estado de Morelos

6th International Workshop on Non Equilibrium Thermodynamics and 3rd Lars Onsager Symposium Røros, Norway, 24 August 2012



## Outline



### Introduction

- Stationary States
- Linear Response

### 2 Resonant Response

- Linear Response for NESS
- Relaxation–Response Relation

## 3 Conclusions



Satationary States Linear Response

## Markov Process



$$H = \frac{P^2}{2m} + V(x) + \text{interactions}, \rightarrow \frac{dx}{dt} = f(x) + \xi(t),$$

 $\langle \xi(t) \rangle = 0, \qquad \langle \xi(t)\xi(t') \rangle = 2\beta\delta(t-t')$ 



Satationary States Linear Response

## Markov Process



$$H = \frac{P^2}{2m} + V(x) + \text{interactions}, \rightarrow \frac{dx}{dt} = f(x) + \xi(t),$$

 $\langle \xi(t) \rangle = 0, \qquad \langle \xi(t)\xi(t') \rangle = 2\beta\delta(t-t')$ 



Raúl Salgado-García Resonant Response in Nonequilibrium Stationary States

Satationary States Linear Response

## Markov Process



$$H = \frac{P^2}{2m} + V(x) + \text{interactions}, \quad \Rightarrow \frac{dx}{dt} = f(x) + \xi(t),$$
$$\langle \xi(t) \rangle = 0, \qquad \langle \xi(t)\xi(t') \rangle = 2\beta\delta(t - t')$$

Raúl Salgado-García Resonant Response in Nonequilibrium Stationary States

ヘロト 人間 とくほとくほとう

Sacultad € de Ciencias

Satationary States Linear Response

## **Stationary States**

• Statistical description : probability density  $\rho(x, t)$ 

 $\mathcal{L}\rho = \partial_t \rho$ 

• The observables: e. g. Particle current

$$j(t) = \langle v \rangle = \int v(x,t)\rho(x,t)dx$$

$$\mathcal{L}P_{ss}=0,$$

Satationary States Linear Response

## **Stationary States**

### • Statistical description : probability density $\rho(x, t)$

$$\mathcal{L}\rho = \partial_t \rho$$

• The observables: e. g. Particle current

$$j(t) = \langle v \rangle = \int v(x,t)\rho(x,t)dx$$

$$\mathcal{L}P_{ss}=0,$$



Satationary States Linear Response

## **Stationary States**

• Statistical description : probability density  $\rho(x, t)$ 

$$\mathcal{L}\rho = \partial_t \rho$$

• The observables: e. g. Particle current

$$j(t) = \langle v \rangle = \int v(x,t)\rho(x,t)dx$$

$$\mathcal{L}P_{ss}=0,$$

Satationary States Linear Response

## **Stationary States**

• Statistical description : probability density  $\rho(x, t)$ 

$$\mathcal{L}\rho = \partial_t \rho$$

• The observables: e. g. Particle current

$$j(t) = \langle v \rangle = \int v(x,t) \rho(x,t) dx$$

$$\mathcal{L}P_{ss}=0,$$

Satationary States Linear Response

## **Stationary States**

• Statistical description : probability density  $\rho(x, t)$ 

$$\mathcal{L}\rho = \partial_t \rho$$

• The observables: e. g. Particle current

$$j(t) = \langle v \rangle = \int v(x,t) \rho(x,t) dx$$

$$\mathcal{L}P_{ss} = 0,$$

Satationary States Linear Response

## Equilibrium stationary states (ESS)

- Once the system has reached the stationary state, can we determine whether a system is in equilibrium or not?
- Detailed balance

## $P(x,t|x',t')\rho_{\rm ss}(x') = P(x',t|x,t')\rho_{\rm ss}(x)$



Satationary States Linear Response

## Equilibrium stationary states (ESS)

- Once the system has reached the stationary state, can we determine whether a system is in equilibrium or not?
- Detailed balance

$$P(x,t|x',t')\rho_{\rm ss}(x')=P(x',t|x,t')\rho_{\rm ss}(x)$$



Satationary States Linear Response

## Non-Equilibrium Stationary States (NESS)

### • A NESS does not fulfill the detailed balance condition.

#### • Generally, the fluxes in a NESS are not zero.



Satationary States Linear Response

## Non-Equilibrium Stationary States (NESS)

- A NESS does not fulfill the detailed balance condition.
- Generally, the fluxes in a NESS are not zero.



Satationary States Linear Response

### Linear response

$$\frac{\partial \rho_{p}}{\partial t} = \mathcal{L}\rho_{p} + \varepsilon \boldsymbol{e}^{i\omega t} \mathcal{L}_{p}\rho_{p}$$

 $\rho_{p} \approx P_{ss} + \varepsilon e^{i\omega t} R, \quad R = \text{Response function}$ 

$$(\mathcal{L} - i\omega)R = \mathcal{L}_{p}P_{ss}$$

$$j_{p} = j_{ss} + \varepsilon \mu(\omega)$$



Satationary States Linear Response

### Linear response

$$\frac{\partial \rho_{p}}{\partial t} = \mathcal{L}\rho_{p} + \varepsilon \boldsymbol{e}^{i\omega t} \mathcal{L}_{p}\rho_{p}$$

## $\rho_{p} \approx P_{ss} + \varepsilon e^{i\omega t} R, \qquad R = \text{Response function}$

$$(\mathcal{L} - i\omega)\mathbf{R} = \mathcal{L}_{p}\mathbf{P}_{ss}$$

$$j_{p} = j_{ss} + \varepsilon \mu(\omega)$$



Satationary States Linear Response

### Linear response

$$\frac{\partial \rho_{p}}{\partial t} = \mathcal{L}\rho_{p} + \varepsilon \boldsymbol{e}^{i\omega t} \mathcal{L}_{p}\rho_{p}$$

 $\rho_{p} \approx P_{ss} + \varepsilon e^{i\omega t} R, \qquad R = \text{Response function}$ 

$$(\mathcal{L} - i\omega)\mathbf{R} = \mathcal{L}_{p}\mathbf{P}_{ss}$$

$$j_{p} = j_{ss} + \varepsilon \mu(\omega)$$



Satationary States Linear Response

### Linear response

$$\frac{\partial \rho_{p}}{\partial t} = \mathcal{L}\rho_{p} + \varepsilon \boldsymbol{e}^{i\omega t} \mathcal{L}_{p}\rho_{p}$$

 $\rho_{p} \approx P_{ss} + \varepsilon e^{i\omega t} R, \qquad R = \text{Response function}$ 

$$(\mathcal{L} - i\omega)\mathbf{R} = \mathcal{L}_{p}\mathbf{P}_{ss}$$

$$j_{p} = j_{ss} + \varepsilon \mu(\omega)$$

Satationary States Linear Response

## Einstein Relation and Kubo Formula

Is  $P_{ss}$  is a ESS,

• Einstein Relation: for  $\omega = 0$ 

$$\mu = \beta D = \int_0^\infty \langle v(t_0)v(t_0+\tau) \rangle d\tau, \quad D = \text{ Diffusion coefficient}$$

Kubo's Formula

$$\mu(\omega) = \int_0^\infty \langle v(t_0)v(t_0+\tau)\rangle e^{i\omega\tau} d\tau,$$

The Fluctuation-Dissipation Theorem, R. Kubo, Rep. Prog. Phys. 29, 255 (1966).



Facultad de Ciencias

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q ()

Satationary States Linear Response

## Einstein Relation and Kubo Formula

Is *P<sub>ss</sub>* is a ESS,

• Einstein Relation: for  $\omega = 0$ 

$$\mu = \beta D = \int_0^\infty \langle v(t_0)v(t_0+\tau) \rangle d\tau, \quad D = \text{ Diffusion coefficient}$$

Kubo's Formula

$$\mu(\omega) = \int_0^\infty \langle \mathbf{v}(t_0) \mathbf{v}(t_0 + \tau) \rangle e^{i\omega\tau} d\tau,$$

The Fluctuation-Dissipation Theorem, R. Kubo, Rep. Prog. Phys. 29, 255 (1966).



Linear Response for NESS Relaxation–Response Relation

### **Resonant Response**

• 
$$(\mathcal{L} - i\omega)R = \mathcal{L}_p P_{ss} \Rightarrow R = (i\omega - \mathcal{L})^{-1} \mathcal{L}_p P_{ss}.$$
  
• For  $Re[s] < 0$ 

$$(s-\mathcal{L})^{-1} = \int_0^\infty dt \, e^{st} e^{t\mathcal{L}}$$

• We obtain ( $s = -\delta + i\omega$ )

$$R = \lim_{\delta \to 0^+} \int_0^\infty dt \, e^{st} e^{t\mathcal{L}} \mathcal{L}_\rho P_{ss}.$$



Linear Response for NESS Relaxation–Response Relation

### **Resonant Response**

• 
$$(\mathcal{L} - i\omega)R = \mathcal{L}_{p}P_{ss} \Rightarrow R = (i\omega - \mathcal{L})^{-1}\mathcal{L}_{p}P_{ss}.$$
  
• For  $Re[s] < 0$ 

$$(s-\mathcal{L})^{-1} = \int_0^\infty dt \, e^{st} e^{t\mathcal{L}}$$

• We obtain ( $s = -\delta + i\omega$ )

$$R = \lim_{\delta \to 0^+} \int_0^\infty dt \, e^{st} e^{t\mathcal{L}} \mathcal{L}_\rho P_{ss}$$



Linear Response for NESS Relaxation–Response Relation

### **Resonant Response**

• 
$$(\mathcal{L} - i\omega)R = \mathcal{L}_p P_{ss} \Rightarrow R = (i\omega - \mathcal{L})^{-1} \mathcal{L}_p P_{ss}.$$
  
• For  $Re[s] < 0$ 

$$(s-\mathcal{L})^{-1} = \int_0^\infty dt \, e^{st} e^{t\mathcal{L}}$$

• We obtain ( $s = -\delta + i\omega$ )

$$R = \lim_{\delta \to 0^+} \int_0^\infty dt \, e^{st} e^{t\mathcal{L}} \mathcal{L}_{\rho} P_{ss}.$$



Linear Response for NESS Relaxation–Response Relation

## **Resonant Response**

### By normalization we have that

$$e^{t\mathcal{L}}\mathcal{L}_{oldsymbol{
ho}} oldsymbol{\mathcal{P}}_{ extsf{ss}} = \sum_{\lambda 
eq 0} oldsymbol{c}_{\lambda} e^{\lambda t} oldsymbol{\mathcal{P}}_{\lambda}$$

where  $\{P_{\lambda}\}_{\lambda}$  is complete basis of eigenfunctions for  $\mathcal{L}$ , with  $\mathcal{L}P_{\lambda} = \lambda P_{\lambda}, \ \lambda = 0 \ \Rightarrow \ P_0 = P_{ss}$ 

The we obtain

$$R = \sum_{\lambda \neq 0} \frac{C_{\lambda} P_{\lambda}}{i\omega - \lambda}$$



Linear Response for NESS Relaxation–Response Relation

## **Resonant Response**

### By normalization we have that

$$e^{t\mathcal{L}}\mathcal{L}_{oldsymbol{
ho}} oldsymbol{\mathcal{P}}_{ extsf{ss}} = \sum_{\lambda 
eq 0} oldsymbol{c}_{\lambda} e^{\lambda t} oldsymbol{\mathcal{P}}_{\lambda}$$

where  $\{P_{\lambda}\}_{\lambda}$  is complete basis of eigenfunctions for  $\mathcal{L}$ , with  $\mathcal{L}P_{\lambda} = \lambda P_{\lambda}, \ \lambda = 0 \ \Rightarrow \ P_0 = P_{ss}$ 

The we obtain

$$R = \sum_{\lambda 
eq 0} rac{C_\lambda P_\lambda}{i\omega - \lambda}$$

Linear Response for NESS Relaxation–Response Relation

## **Resonant Response**

# Proposition: If P<sub>ss</sub> is an equilibrium state then the spectrum of *L* is real, i. e. λ ∈ ℝ

The proof is based on a symmetry relation for the Fokker-Plank operator  $\mathcal{L}$  due to J. Kurchan [*J. Phys. A: Math. and Gen.* **31**, 3719 (1998).]

• The amplitude of the response *R* has a maximum at  $\omega = 0$ .



Linear Response for NESS Relaxation–Response Relation

## **Resonant Response**

Proposition: If P<sub>ss</sub> is an equilibrium state then the spectrum of *L* is real, i. e. λ ∈ ℝ

The proof is based on a symmetry relation for the Fokker-Plank operator  $\mathcal{L}$  due to J. Kurchan [*J. Phys. A: Math. and Gen.* **31**, 3719 (1998).]

• The amplitude of the response *R* has a maximum at  $\omega = 0$ .



Linear Response for NESS Relaxation–Response Relation

## **Resonant Response**

Proposition: If P<sub>ss</sub> is an equilibrium state then the spectrum of *L* is real, i. e. λ ∈ ℝ

The proof is based on a symmetry relation for the Fokker-Plank operator  $\mathcal{L}$  due to J. Kurchan [*J. Phys. A: Math. and Gen.* **31**, 3719 (1998).]

• The amplitude of the response *R* has a maximum at  $\omega = 0$ .



Linear Response for NESS Relaxation–Response Relation

## **Resonant Response**

# • The eigenvalues of $\mathcal{L}$ may be complex only if the stationary states is a NESS.

• In this case *R* may have a maximum at some  $\omega \neq 0$ . We call this behavior *resonant response* 



Linear Response for NESS Relaxation–Response Relation

## **Resonant Response**

- The eigenvalues of  $\mathcal{L}$  may be complex only if the stationary states is a NESS.
- In this case *R* may have a maximum at some  $\omega \neq 0$ . We call this behavior *resonant response*



Linear Response for NESS Relaxation–Response Relation

### Relaxation—Response Relation Relaxation and Linear Response

- J =flux operator  $\Rightarrow j_{ss} = \langle J \rangle_{ss}$ .
- $\varepsilon e^{i\omega t} J_{p}$  = perturbing flux operator

$$j_p(t) = \langle J + \varepsilon e^{i\omega t} J_p \rangle_p$$

• At first order in  $\varepsilon$  we have

$$\mu(\omega) := \frac{j_{p} - j_{ss}}{\varepsilon} = \langle J_{p} \rangle_{ss} + \int_{0}^{\infty} \langle J e^{t\mathcal{L}} \mathcal{L}_{p} \rangle_{ss} dt.$$



Linear Response for NESS Relaxation–Response Relation

### Relaxation—Response Relation Relaxation and Linear Response

### • J =flux operator $\Rightarrow j_{ss} = \langle J \rangle_{ss}$ .

•  $\varepsilon e^{i\omega t} J_{p}$  = perturbing flux operator

$$j_p(t) = \langle J + \varepsilon e^{i\omega t} J_p \rangle_p$$

• At first order in  $\varepsilon$  we have

$$\mu(\omega) := \frac{j_{\rho} - j_{ss}}{\varepsilon} = \langle J_{\rho} \rangle_{ss} + \int_{0}^{\infty} \langle J e^{t\mathcal{L}} \mathcal{L}_{\rho} \rangle_{ss} dt.$$



Linear Response for NESS Relaxation–Response Relation

### Relaxation—Response Relation Relaxation and Linear Response

- J =flux operator  $\Rightarrow j_{ss} = \langle J \rangle_{ss}$ .
- $\varepsilon e^{i\omega t} J_{p}$  = perturbing flux operator

$$j_{\rho}(t) = \langle J + \varepsilon e^{i\omega t} J_{\rho} \rangle_{\rho}$$

• At first order in  $\varepsilon$  we have

$$\mu(\omega) := \frac{j_{\rho} - j_{ss}}{\varepsilon} = \langle J_{\rho} \rangle_{ss} + \int_{0}^{\infty} \langle J e^{t\mathcal{L}} \mathcal{L}_{\rho} \rangle_{ss} dt.$$



Linear Response for NESS Relaxation–Response Relation

### Relaxation—Response Relation Relaxation and Linear Response

• 
$$J =$$
flux operator  $\Rightarrow j_{ss} = \langle J \rangle_{ss}$ .

•  $\varepsilon e^{i\omega t} J_{\rho} =$  perturbing flux operator

$$j_{\rho}(t) = \langle J + \varepsilon e^{i\omega t} J_{\rho} \rangle_{\rho}$$

• At first order in  $\varepsilon$  we have

$$\mu(\omega) := \frac{j_{\rho} - j_{ss}}{\varepsilon} = \langle J_{\rho} \rangle_{ss} + \int_{0}^{\infty} \langle J e^{t\mathcal{L}} \mathcal{L}_{\rho} \rangle_{ss} dt.$$



Linear Response for NESS Relaxation–Response Relation

### Relaxation—Response Relation Relaxation and Linear Response

- J =flux operator  $\Rightarrow j_{ss} = \langle J \rangle_{ss}$ .
- $\varepsilon e^{i\omega t} J_{\rho} =$  perturbing flux operator

$$j_{\rho}(t) = \langle J + \varepsilon e^{i\omega t} J_{\rho} \rangle_{\rho}$$

At first order in ε we have

$$\mu(\omega) := \frac{j_{p} - j_{ss}}{\varepsilon} = \langle J_{p} \rangle_{ss} + \int_{0}^{\infty} \langle J e^{t\mathcal{L}} \mathcal{L}_{p} \rangle_{ss} dt.$$



Linear Response for NESS Relaxation–Response Relation

### Relaxation—Response Relation Relaxation and Linear Response

### • $e^{t\mathcal{L}}\mathcal{L}_pP_0$ has integral zero. Then,

$$P_{sp}(t) := P_{ss} + \gamma^{-1} e^{t\mathcal{L}} \mathcal{L}_p P_0$$

is properly normalized to 1 independently of the  $\gamma$  value.  $\bullet\,$  Then

$$egin{aligned} &\langle J e^{t\mathcal{L}} \mathcal{L}_{p} 
angle_{ss} = \langle J 
angle_{sp}(t) - \langle J 
angle_{ss} \ &\langle J e^{t\mathcal{L}} \mathcal{L}_{p} 
angle_{ss} = j^{*}(t) - j_{ss} \end{aligned}$$



Linear Response for NESS Relaxation–Response Relation

### Relaxation—Response Relation Relaxation and Linear Response

•  $e^{t\mathcal{L}}\mathcal{L}_{\rho}P_{0}$  has integral zero. Then,

$$P_{sp}(t) := P_{ss} + \gamma^{-1} e^{t\mathcal{L}} \mathcal{L}_p P_0$$

is properly normalized to 1 independently of the  $\gamma$  value.  $\bullet\,$  Then

$$\langle Je^{t\mathcal{L}}\mathcal{L}_{p} \rangle_{ss} = \langle J \rangle_{sp}(t) - \langle J \rangle_{ss}$$
  
 $\langle Je^{t\mathcal{L}}\mathcal{L}_{p} \rangle_{ss} = j^{*}(t) - j_{ss}$ 



Linear Response for NESS Relaxation–Response Relation

### Relaxation—Response Relation Relaxation and Linear Response

• 
$$e^{t\mathcal{L}}\mathcal{L}_{\rho}P_0$$
 has integral zero. Then,

$$P_{sp}(t) := P_{ss} + \gamma^{-1} e^{t\mathcal{L}} \mathcal{L}_p P_0$$

is properly normalized to 1 independently of the  $\gamma$  value.  $\bullet\,$  Then

$$\langle Je^{t\mathcal{L}}\mathcal{L}_{p} \rangle_{ss} = \langle J \rangle_{sp}(t) - \langle J \rangle_{ss}$$
  
 $\langle Je^{t\mathcal{L}}\mathcal{L}_{p} \rangle_{ss} = j^{*}(t) - j_{ss}$ 



Linear Response for NESS Relaxation–Response Relation

### Relaxation—Response Relation Relaxation and Linear Response

•  $e^{t\mathcal{L}}\mathcal{L}_pP_0$  has integral zero. Then,

$$P_{sp}(t) := P_{ss} + \gamma^{-1} e^{t\mathcal{L}} \mathcal{L}_p P_0$$

is properly normalized to 1 independently of the  $\gamma$  value.  $\bullet\,$  Then

$$egin{aligned} &\langle J e^{t \mathcal{L}} \mathcal{L}_{p} 
angle_{ss} = \langle J 
angle_{sp}(t) - \langle J 
angle_{ss} \ &\langle J e^{t \mathcal{L}} \mathcal{L}_{p} 
angle_{ss} = j^{*}(t) - j_{ss} \end{aligned}$$



Linear Response for NESS Relaxation–Response Relation

### Relaxation—Response Relation Relaxation and Linear Response

• The frequency-dependent mobility

$$\mu(\omega) = \langle J_{p} 
angle_{ss} + \gamma^{-1} \int_{0}^{\infty} (j^{*}(t) - j_{ss}) e^{j\omega t} dt$$

•  $j^*(t) = \text{time-dependent}$  average flux which relaxes to a stationary value,  $j^*(t) \rightarrow j_{ss}$  when  $t \rightarrow \infty$ , starting with a specific initial conditions

$$P_{initial} = P_{ss} + \gamma \mathcal{L}_p P_0$$

Resonant Response in Nonequilibrium Steady States, R. Salgado-Garcia Physical Review E 85, 051130 (2012).

ヘロア 人間 アメヨア 人口 ア

de Ciencias

ъ

Linear Response for NESS Relaxation–Response Relation

### Relaxation—Response Relation Relaxation and Linear Response

• The frequency-dependent mobility

$$\mu(\omega) = \langle J_{p} 
angle_{ss} + \gamma^{-1} \int_{0}^{\infty} (j^{*}(t) - j_{ss}) e^{i\omega t} dt$$

•  $j^*(t) = \text{time-dependent}$  average flux which relaxes to a stationary value,  $j^*(t) \rightarrow j_{ss}$  when  $t \rightarrow \infty$ , starting with a specific initial conditions

$$P_{initial} = P_{ss} + \gamma \mathcal{L}_p P_0$$

Resonant Response in Nonequilibrium Steady States, R. Salgado-Garcia Physical Review E 85, 051130 (2012).

Raúl Salgado-García Resonant Response in Nonequilibrium Stationary States

イロト イポト イヨト イヨト

Ciencias

Linear Response for NESS Relaxation–Response Relation

# Relaxation–Response Relation



- An archetypal model: a tilted periodic potential
- Langevin equation:
  - $\frac{dx}{dt} = \tilde{\gamma}f(x) + \xi(t) + \varepsilon F(t)$

ヘロン ヘアン ヘビン ヘビン

3

Linear Response for NESS Relaxation–Response Relation

# Relaxation–Response Relation



- An archetypal model: a tilted periodic potential
- Langevin equation:

$$\frac{dx}{dt} = \tilde{\gamma}f(x) + \xi(t) + \varepsilon F(t)$$

< 🗇 🕨

→ E > < E >

э

• 
$$f(x) = \sin(x) + F_0$$
,

•  $F(t) = \sin(\omega t)$ 

Linear Response for NESS Relaxation–Response Relation

### Relaxation—Response Relation Relaxation and Linear Response

The Fokker-Planck operator

$$\mathcal{L} = -\frac{\partial}{\partial x} \left( f(x) - \beta^{-1} \frac{\partial}{\partial x} \right)$$

- The curren operator is  $J = f(x) + \beta^{-1}\partial_x$ .
- The perturbing operator is L<sub>p</sub> = −∂<sub>x</sub>
  J<sub>p</sub> = 1



Linear Response for NESS Relaxation–Response Relation

### Relaxation—Response Relation Relaxation and Linear Response

The Fokker-Planck operator

•  $J_{p} = 1$ 

$$\mathcal{L} = -\frac{\partial}{\partial x} \left( f(x) - \beta^{-1} \frac{\partial}{\partial x} \right)$$

- The curren operator is  $J = f(x) + \beta^{-1}\partial_x$ .
- The perturbing operator is  $\mathcal{L}_{p}=-\partial_{x}$



Linear Response for NESS Relaxation–Response Relation

### Relaxation—Response Relation Relaxation and Linear Response

The Fokker-Planck operator

$$\mathcal{L} = -\frac{\partial}{\partial x} \left( f(x) - \beta^{-1} \frac{\partial}{\partial x} \right)$$

- The curren operator is  $J = f(x) + \beta^{-1}\partial_x$ .
- The perturbing operator is  $\mathcal{L}_p = -\partial_x$
- *J*<sub>p</sub> = 1



Linear Response for NESS Relaxation–Response Relation

# Relaxation–Response Relation



Linear Response for NESS Relaxation–Response Relation

# Relaxation–Response Relation



Linear Response for NESS Relaxation–Response Relation

# Relaxation–Response Relation

1.7 $j_{\rm relax}(t)$ initial state  $P_0(x) + \gamma P_0'(x)$ 1.6 1.5final state  $P_0(x)$ 1.4 (a)  $1.3^{L}_{0}$ 5 10 15 20 25 t Facultad Ciencias

Raúl Salgado-García Resonant Response in Nonequilibrium Stationary States

ъ

Linear Response for NESS Relaxation–Response Relation

## Relaxation-Response Relation

Numerical simulation



Raúl Salgado-García Resonant Response in Nonequilibrium Stationary States

Linear Response for NESS Relaxation–Response Relation

# Relaxation–Response Relation



Raúl Salgado-García Resonant Response in Nonequilibrium Stationary States



- If the system is in a NESS, it may show a resonant response at the frequencies given by the imaginary part of the complex eigenvalues.
- We have shown a relation between the *relaxation* of the system and its *response*.
- We tested these predictions by numerical simulations.



## THANKS!



Raúl Salgado-García Resonant Response in Nonequilibrium Stationary States