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Modeling of nonlinear surface rheology with NET
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Aim:
 Investigate effect of surface rheology on macroscopic behavior and stability of emulsions,

foam, encapsulation systems
 Link nonlinear surface rheology to deformation induced changes in surface microstructure

Interfacial structure:

« 2D suspensions

« 2D glasses

2D gels

« 2D (liquid) crystalline phases
» 2D nano-composites




Determination of surface rheological properties of complex interfaces
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Focus of this presentation: anisotropic structures and effect of flow on their orientation
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Surface dilatational modulus for single layers

 MCT/W interface

* Frequency strain sweep: 0.01 Hz
e Strain of frequency sweep : 5%
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Nonlinear behavior even at lowest
strains that can be applied (~0.02)
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Most dilatational studies do not
even apply strain sweeps

No useful constitutive equations
for nonlinear surface stresses

L.M.C. Sagis, Rev. Mod. Phys. 83, 1367 (2011)
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Excellent opportunity for NET to
fill this “knowledge gap”
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Modeling surface rheology with Nonequilibrium Thermodynamics (NET)

Properties constitutive models for in-plane surface fluxes should have:

* Link surface stress to the microstructure of the interface
* Give structure evolution as a function of applied deformation
* Incorporate a coupling with the bulk phase

* Be valid far beyond equilibrium

L.M.C. Sagis, Rev. Mod. Phys. 83, 1367 (2011)



What is “far beyond equilibrium” for surface rheology of complex interfaces:

* Fluid-fluid interfaces with complex microstructure show changes in
that structure at very low strains

 First nonlinear contributions to surface stress: 10°<y<103
« Significant deviations from linear behaviour: v>0.1
« Most industrial applications: Y>> 1

« CIT models typically start to fail at: 103 <y <107



GENERIC for multiphase systems with complex interfaces:

dA
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E = total energy of the system S = total entropy of the system
— S
A=[,adV + | a®dA

H.C. Ottinger, D. Bedeaux and D.C. Venerus, Phys. Rev. E., 80, 021606 (2009)
L.M.C. Sagis, Advances in Colloid & Interface Science 153, 58 (2010)
L.M.C. Sagis, Rev. Mod. Phys. 83, 1367 (2011)



GENERIC for multiphase systems with complex interfaces:
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GENERIC for structured interfaces

Surface extra stress tensor:

Configurational
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GENERIC for structured interfaces

We can create a wide range of models by specifying:

ES’G’R:LS’RZ’DIS_"D?:

Admissible models:

RS>0

RS>0
5,5]>0 ) o
| Symmetric positive semi-

S
>
DF >0 definite tensors
D: >0




Example:

Interface stabilized by a mixture of rod-like particles and low molecular weight
surfactant (dilute 2D particle dispersion)

Structural parameter: particle orientation tensor C°> =2 <n°n°
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Assumptions: No inhomogeneity caused by the flow, and no
exchange with the bulk phases

s = ppS=a constant (= pPw®  With ®,°=0.01)



Orientation of rod-like particles as a function of shear rate:

Expression for the surface structural Helmholtz free energy (per unit area):

pr = EELPYR (g 4 L (P — €7) + Indet C))
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Expression for the surface relaxation tensor:

m 1 3
8 ) 3 f L] 5 ] L] o, O -
R".r = - (ﬂa'r_i_clj‘y + ﬂ&y .'3,!'.(- + _a [[::C.:”Cﬂu + CCI.J-*’ .'3,“-] } a :_"I_'r' ol

s rlffj‘lﬂ'qf-'i-'p T

Balance equations for the surface structural tensor:
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Initial condition: C3(0)=P



Flat interface with anisotropic particles in a constant in-plane shear field

Steady state values orientation tensor (=0)
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Flat interface with anisotropic particles in a constant in-plane shear field

Comparison with a CIT model (8 parameters)™:
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Flat interface with anisotropic particles in oscillatory in-plane shear field
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Flat interface with anisotropic particles in oscillatory in-plane shear field
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 First nonlinear contributions
already at y < 0.01
« Highly nonlinearaty > 1




Flat interface with anisotropic particles in oscillatory in-plane shear field

Surface storage modulus, G’ (===) and loss modulus, G.” (- - - -)

G.',G." [10° Pam]

45
4
3.5
3
2.5

10

Two values of wr:
« 1.0: soft gel-like behaviour

e 0.1: viscoelastic liquid



V() = ¥ SiN(2nwt), ®=0.1 Hz,t=1.05
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Flat interface with anisotropic particles in oscillatory dilatation (Langmuir trough)
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Flat interface with anisotropic particles in oscillatory dilatation (Langmuir trough)
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Flat interface with anisotropic particles in oscillatory dilatation (Langmuir trough)
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« Calculated from the intensity of the first harmonic (as in real experiment)
 In spite of the high nonlinearity of the response, modulus plot shows only
mild strain hardening.



Conclusions:

1. GENERIC appears to be a powerful tool to model the nonlinear
surface rheological response of complex interfaces.

2. True value of the framework still has to be established by
comparison with experimental data

Future work:

« Comparison with data for surface shear experiments + optical techniques

« Extension to more complex systems



Perspectives:

Ultimate goal:

understanding the complex dynamic
behaviour of biomaterial microcapsules,
liposomes, cells, ultrasound
microbubbles, ......

NET can play a major role in
this field by providing accurate
descriptions for the coupled
transfer of mass, heat, and
momentum, on both microscopic and
macroscopic length scales.
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