Heat Transfer in Dielectric Mirrors

J. A. del Río, D. Estrada, F. Vázquez

August 21, 2012

1 Introduction

- Motivation
- We have experience on fabrication photonics porous silicon structures
- 2 Model
 - Heat transport
 - Effective Properties
- 3 Experiments set up
 - Using thermocouples
 - Using thermographic camera
- 4 Results
 - Porous silicon multilayers are good secondary mirrors for solar concentration
 - Silicon multilayers reach less temperatures under solar concentration
- 5 Conclusions
 - -

Introduction		
00000		

Perfect mirrors

The dielectric mirrors are called perfect mirror because of their high reflectivity. Multilayers of alternating periodic refraction index conform the structure of these mirrors¹.

Figure: Reflectance of different porous silicon multilayers

Introduction ○●0000			
Perfect mirr	ors		

If these structures are fabricated with ideal materials we obtain ideal mirrors or filters².

Figure: Good quality filters

²Agarwal, del Río. Appl. Phys. Lett. 82, 1512 (2003) \mathbb{B} , $\mathbb{A} \cong \mathbb{A} \cong \mathbb{A} \otimes \mathbb{A}$

Introduction			
00000			
Perfect mir	rors		

We have fabricated mirrors. filters and photonic structures³.

FIG. 1. Cross-sectional SEM image of the 20-cavity sample. The inset shows the amplified view of the structure.

FIG. 2. (a) Solid line: Reflectivity of the 20-cavity sample measured at the incidence angle of 6⁺. The spect-n above and below 1100 meV have been recorded with two different detectors. The dashed line shows the calculated reflectivity of this sample. (b) Band structure of the 20-cavity sample calculated black areas represent the anilowed minibands and black areas represent the mingaps.

Figure: Good optical quality allows to find photonic Bloch oscillations

³Agarwal et al. Phys. Rev. Lett. 92, 097401 (2004).

Introduction 000000			Results 00000	
	ā	 		

Fabrication of porous silicon multilayers

Porous silicon is produced using electrochemical etching of crystalline silicon in a HF and glycerol solution in a volume ratio of 7:3:1.

Figure: Fabrication steps

Porous silicon multilayers

Anodization with alternating current density between $1.5 - 40mA/cm^2$, layers of high and low porosity, 56% y 15% ⁴, and refractive indexes 1.4 and 2.4. We have 20 submirrors of 5 periods each, with a total width of $68.8\mu m$.

Figure: SEM image of transversal section of a p-Si multilayer

⁴Nava et al. Phys. Status Solidi C, 6, 1721 (2009)

Introduction			
00000			
Porous sil	icon multil	avers	

The structure of a p-Si multilayer is composed by a continuous arrangement of submirrors. Each mirror is designed to reflect a different wavelength λ and is formed by 20 periods. Values for λ are chosen as follows.

First the initial value λ_1 is given, the other values will follow the relation⁵: $\lambda_{i+1} - \lambda_i = 2 + i$ where *i* represents the number of submirrors. By designing multilayers with this properties we are able to fabricate mirrors which reflect in a continuous range of the spectrum.

⁵Agarwal and del Río Int. J. Modern Phys. B 10, 99 ($(2006)_{\Xi}$) (Ξ) Ξ) \Im

Model		
●000000		

Heat Transport in porous silicon mirror

$$\frac{\partial^2 T}{\partial r^2} + \frac{1}{r} \frac{\partial T}{\partial r} + \frac{\partial^2 T}{\partial z^2} = \frac{1}{\alpha} \frac{\partial T}{\partial t} \quad 0 < r < R; \quad 0 < z < Z; t > 0,$$

with the following boundary conditions 6

$$\frac{\partial T}{\partial r} = 0 \quad at \quad r \leq R; 0 \leq z \leq Z \qquad (1)$$

$$-\kappa \frac{\partial T}{\partial r} = (1 - P_{Si})q_s + \varepsilon \sigma (T^4 - T_{amb}^4)$$

$$- h(T - T_{amb}) \quad atz = 0 \qquad 0 < r < R \qquad (2)$$

$$\frac{\partial T}{\partial z} = U(T - T_{amb}) \quad at \quad z = Z \quad 0 \leq r \leq R \qquad (3)$$

$$T = T_{amb} \quad at \quad t = 0 \qquad (4)$$

⁶de la Mora et al. Solar Energy Materials and Solar Cells 93_1218 (2009).

	Model ⊙●000000				
Effective	thermal p	oroperties	of porous	silicon	multilayers

Thermodynamic properties

- We need to model the thermal conductivity and thermal diffusivity of each p-Si layer.
- **2** We need to model the effective heat transport coefficients.

	Model o●ooooo			
. 1	1	 C	• 1 •	11

Effective thermal properties of porous silicon multilayers

Thermodynamic properties

- We need to model the thermal conductivity and thermal diffusivity of each p-Si layer.
- **2** We need to model the effective heat transport coefficients.
- **1** By use of averaging methods we determine those properties

	Model ○o●oooo		
Effective co	onductivit	- 77	

Figure: Scheme of the structure of submirrors in the multilayer, where a_i is the width of each one.

A submirror or p-Si is formed by $\frac{n}{2}$ periods of different porosities and lengths d_1 and d_2 respectively.

Model		
0000000		

Effective conductivity in porous silicon multilayers

Heat transfer in porous materials can be calculated using effective media methods. We use a formula base on Reciprocity Theorem and Padê Approximant for a two component material⁷

$$\kappa_{eff} = \kappa_1 \frac{1 + c(\sqrt{\frac{\kappa_2}{\kappa_1}} - 1)}{1 + c(\sqrt{\frac{\kappa_1}{\kappa_2}} - 1)}$$
(5)

 $\kappa_1 = 148 \frac{W}{K \cdot m}$ is the thermal conductivity of silicon and $\kappa_2 = 0.024 \frac{W}{K \cdot m}$ of air. This formula obeys Hashim-Strikman bounds.

⁷del Río, et al. Solid State Comm. 106, 183 (1998).

Figure: Nanoestructured porous silicon multilayer

For our periodic structure of layers of high (56%) and low (15%) porosity, κ_{eff} for each one was calculated, obtaining values of $\kappa_{eff_1} = 1.489 \frac{W}{K \cdot m}$ and $\kappa_{eff_2} = 9.972 \frac{W}{K \cdot m}$, respectively. We used these values to find effective thermal properties of p-Si multilayer.

	Model ○0000●0					
Effective conductivity						

Effective conductivity of the multilayer with 20 submirrors, each one with 5 periods,

$$k_1 = \frac{1}{d_1 + d_2} \sum_{i=1}^{\frac{n}{2}} (k_1 d_{1i} + k_2 d_{2i}), \tag{6}$$

where k_1 is the effective conductivity in the first layer and k_2 in the second, $a_i = d_{1i} + d_{2i}$. Then total effective conductivity of the multilayer, the next relation is used:

$$K_{eff_m} = \frac{k_1 a_1 + k_2 a_2 + \dots + k_{20} a_{20}}{a_1 + a_2 + \dots + a_{20}},\tag{7}$$

where a_i is the width and k_i is the effective conductivity of each submirror, i = 1, 2, ..., 20.

	Model ○00000●					
Effective conductivity						

Table: Values for effective thermal conductivity, effective specific heat and effective thermal diffusivity of the samples.

Sample	κ_{eff}	$\rho c_{p_{eff}}$	α_{eff}
	$\left(\frac{W}{K \cdot m}\right)$	$\left(\frac{J}{K \cdot m^3}\right)$	$\left(\frac{m^2}{s}\right)$
freestanding p-Si multilayer	3.18	68' 539.71	4.64×10^{-5}
p-Si multilayer + c-Si	138.67	1'530'382.30	9.06×10^{-5}
crystalline silicon	148.0	1'631'000.0	9.07×10^{-5}
aluminum mirror	0.914	2'074'359.24	4.40×10^{-7}
aluminized silicon	148.06	1'631'821.02	9.07×10^{-5}

Optical properties of p-Si mirrors

Our mirror was designed to reflect light from the visible to the near infrared (500 -2500 nm). To measure the reflectance of the samples a spectrophotometer UV-Vis-IR (Shimadzu UV1601) was used.

Figure: Reflectance spectrum of p-Si, c-Si and Al mirror

		Experiments set up	
		0000	
Experime	ntal set un	1	

Figure: Concentrating solar radiation on a porous silicon mirror

Varying the number of optical class parabolic mirrors focused on porous silicon mirror with and without cooling. Temperature was measured with a thermocouple.

		eriments set up	
Exporting of up 9	Turnovimon		

Figure: Experimental set up, heating three mirrors simultaneously

To study heat propagation in a p-Si mirror, a silicon wafer, and an aluminum mirror. The Al mirror is made of a very thin layer of aluminum $(1.5 \ \mu m)$ covered with a glass of 3mm width. The c-Si wafer and p-Si mirror have both the same width of 1mm. We exposed them simultaneously under concentrated solar radiation and studied temperature change in each one of them₂

		Experiments set up	
		0000	
Experiment	al set up	2	

IR images were taken during the heating of the mirrors indicating a significant temperature increase. The temperature was measured in two different ways:

- Selecting the central spot of each sample and defining the temperature at the same point in all the images of the experimental series.
- Selecting an area (circle) that includes each mirror and estimating the average temperatures of the mirrors on each image sequence.

		$\begin{array}{c} \text{Results} \\ \bullet \bullet \circ \circ \circ \circ \end{array}$	
- _			

Thermocouple results

Figure: Time evolution of temperature a) without cooling, b) with cooling

Good agreement with modeling ⁸. However the mirrors break. ⁸de la Mora et al. Solar Energy Materials and Solar Cells $93_{2}1218_{2}(2009)$.

			Results			
			00000			
Thermosouple regults						

Thermocouple results

Figure: Porous silicon mirror before and after radiation without cooling

It seems that dilation plays a crucial role, but we need to understand whit more detail the heat transport 9

⁹de la Mora et al. Solar Energy Materials and Solar Cells 93=1218=(2009).

		$\begin{array}{c} \text{Results} \\ \circ \circ \bullet \circ \circ \end{array}$	
Results			

IR images were taken to measure temperature changes in the mirror after 3-5 min of exposure to concentrated solar radiation.

Figure: Temperature measurement vs. time in porous silicon mirror

Temperature increases of 30° C over environment temperature, reaching a final temperature of 70° C.

		$\begin{array}{c} \text{Results} \\ \circ \circ \circ \bullet \circ \end{array}$	
Comparison			

IR images of the initial, intermediate and final measurements of the experimental session. The mirrors are top porous silicon, middle crystalline silicon and at bottom the aluminum mirror.

Figure: IR Image at time a) $t=0 \min$, b) $t=2 \min$, c) $t=4 \min$

	Results	
	00000	

Spot and area average comparisons

Figure: a) Temperature vs. time in spot b)Area average temperature vs. time of three mirrors

		Conclusions ●00
Comments		

- Main problem with thermographic camera was the good quality of the porous silicon mirrors. We needed to pay attention to the reflection from sky.
- Even that we found that

$$\alpha_{eff_{Almirror}} < \alpha_{eff_{p-Si}} < \alpha_{eff_{c-Si}}.$$

the porous silicon mirror shows interesting properties, because the increase on the temperature is less than on the other mirrors for the case of spot measurement.

■ In the case of area average the role of the mass in the aluminum mirror is crucial to explain the difference.

		$\begin{array}{c} \text{Conclusions} \\ 0 \bullet 0 \end{array}$
Remarks		

- We studied heat transfer in different dielectric mirrors.
- We designed and fabricated a porous silicon multilayer mirror and compared it to a silicon wafer, and a standard aluminum mirror.
- We show multilevel average method to calculate effective thermal properties for porous silicon multilayers.
- More detailed studies are needed to understand the heat transport in multilayers systems.
- Dielectric mirrors could be used as secondary mirrors in solar concentration systems.

		$\begin{array}{c} \text{Conclusions} \\ 0 \bullet 0 \end{array}$
Remarks		

- We studied heat transfer in different dielectric mirrors.
- We designed and fabricated a porous silicon multilayer mirror and compared it to a silicon wafer, and a standard aluminum mirror.
- We show multilevel average method to calculate effective thermal properties for porous silicon multilayers.
- More detailed studies are needed to understand the heat transport in multilayers systems.
- Dielectric mirrors could be used as secondary mirrors in solar concentration systems.
- We need to meassure temperature in small systems

		Conclusions
		000

Thanks!

- イロト イヨト イヨト ノヨー のへの