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My story for you

Foundation: The essence of nonequilibrium thermodynamics far 
beyond equilibrium has been deeply understood from various 
perspectives; an elegant geometric formulation is available 
(energy – Poisson bracket, entropy – dissipation bracket).

Innovation: Classical nonequilibrium thermodynamics is so 
well-developed and beautifully structured that even a dummy 
can generalize it to dissipative quantum systems.

Provocation: Quantum mechanics of the 1920s is a highly 
problematic idealization of a truly fundamental “first principles” 
theory, which is dissipative quantum mechanics
(rule of thumb: a healthy theory should not confuse Einstein).
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quantum computer world of human users

Motivation

quantum computing, quantum information processing,
quantum communication, quantum cryptography, quantum simulation,
quantum metrology, quantum sensing, quantum imaging, ...
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GENERIC: Quantum Generalization
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Canonical correlations as new geometric object for quantum dissipation:

A;B ρ tr ρλ
Aρ1 λ–

B( ) λd
0

1

 tr AρB( )= = Aρ ρλ
Aρ1 λ– λd

0

1

=

strength: coupling bracket(s)

coupling operator(s)

Hamiltonian, commutator

von Neumann entropy kB–  Tr ρ ρln( )
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A detail:
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Nonlinear Thermodynamic Quantum Master Equation
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Canonical equilibrium solution:

Heat bath: H. Grabert, 
Z. Phys. B 49 (1982) 161



Polymer 
Physics

Nonlinear Thermodynamic Quantum Master Equation
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Quantum subsystem:

Classical environment:
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The geometry and thermodynamics of dissipative quantum
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PACS 05.70.Ln – Nonequilibrium and irreversible thermodynamics
PACS 03.65.Yz – Decoherence; open systems; quantum statistical methods

Abstract – Dirac’s method of classical analogy is employed to include quantum degrees of
freedom into a geometric framework of nonequilibrium thermodynamics. The proposed formulation
of dissipative quantum mechanics builds entirely upon the geometric structures implied by
commutators and canonical correlations. A lucid formulation of a nonlinear quantum master
equation follows from the thermodynamic structure. The approach is applicable even at very low
temperatures and complex classical environments with internal structure can be handled readily.

open  access Copyright c© EPLA, 2011
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PHYSICAL REVIEW A 82, 052119 (2010)

Nonlinear thermodynamic quantum master equation: Properties and examples

Hans Christian Öttinger*

ETH Zürich, Department of Materials, Polymer Physics, HCI H 543, CH-8093 Zürich, Switzerland
(Received 5 April 2010; revised manuscript received 26 August 2010; published 29 November 2010)

The quantum master equation obtained from two different thermodynamic arguments is seriously nonlinear. We
argue that, for quantum systems, nonlinearity occurs naturally in the step from reversible to irreversible equations
and we analyze the nature and consequences of the nonlinear contribution. The thermodynamic nonlinearity
naturally leads to canonical equilibrium solutions and extends the range of validity to lower temperatures. We
discuss the Markovian character of the thermodynamic quantum master equation and introduce a solution strategy
based on coupled evolution equations for the eigenstates and eigenvalues of the density matrix. The general ideas
are illustrated for the two-level system and for the damped harmonic oscillator. Several conceptual implications
of the nonlinearity of the thermodynamic quantum master equation are pointed out, including the absence of a
Heisenberg picture and the resulting difficulties with defining multitime correlations.

DOI: 10.1103/PhysRevA.82.052119 PACS number(s): 03.65.Yz, 05.70.Ln

Some simple examples!
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Some Nice Features

1. Proper quantum regression theorem

2. Canonical density matrix for equilibrium with a heat bath

3. Positive definite density matrix

Because  drives irreversible dynamics!ρln
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Some Nice Features

1. Proper quantum regression theorem

2. Canonical density matrix for equilibrium with a heat bath

3. Positive definite density matrix

4. Feedback equation for environment

5. Fulfils Ehrenfest’s theorem (consistency with classical mechanics)

6. Environments and couplings of enormous generality can be 
handled, including open environments

7. “Markovian behavior” of full quantum-classical system

8. Equivalent stochastic simulations in Hilbert space can be performed



Polymer 
Physics

My story for you

Foundation: The essence of nonequilibrium thermodynamics far 
beyond equilibrium has been deeply understood from various 
perspectives; an elegant geometric formulation is available 
(energy – Poisson bracket, entropy – dissipation bracket).

Innovation: Classical nonequilibrium thermodynamics is so 
well-developed and beautifully structured that even a dummy 
can generalize it to dissipative quantum systems.

Provocation: Quantum mechanics of the 1920s is a highly 
problematic idealization of a truly fundamental “first principles” 
theory, which is dissipative quantum mechanics
(rule of thumb: a healthy theory should not confuse Einstein).
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Outlook

I will not rest until I can write a short and simple stochastic 
computer simulation program that

• is based on a thermodynamic quantum master equation

• can be appreciated and reproduced by any motivated 
third-year student of physics

• can produce high-precison results for the anomalous 
magnetic dipole moment of the electron

(stochastic particle simulation of quantum electrodynamics)
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Dynamic coarse-graining approach to quantum field theory

Hans Christian Öttinger*

ETH Zürich, Department of Materials, Polymer Physics, HCI H 543, CH-8093 Zürich, Switzerland
(Received 11 August 2010; revised manuscript received 11 July 2011; published 6 September 2011)

We build quantum field theory on the thermodynamic master equation for dissipative quantum systems.

The vacuum is represented by a thermodynamic equilibrium state in the low-temperature limit. All

regularization is consistently provided by a friction mechanism; with decreasing friction parameter, only

degrees of freedom on shorter and shorter length scales are damped out of a quantum field theory.

No divergent integrals need to be manipulated. Renormalization occurs as a tool to refine perturbation

expansions, not to remove divergences. Relativistic covariance is recovered in the final results. We

illustrate the proposed thermodynamic approach to quantum fields for the ’4 theory by calculating the

propagator and the � function, and we offer some suggestions on its application to gauge theories.

DOI: 10.1103/PhysRevD.84.065007 PACS numbers: 03.70.+k, 05.10.Cc, 05.70.Ln, 11.10.Wx

PHYSICAL REVIEW D 84, 065007 (2011)
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Basic Ingredients

• Thermodynamic quantum master equation for system dynamics

• Linearization around equilibrium at low temperature

• Friction mechanism for dynamic smoothing of local details

• Renormalization group analysis for refining perturbation theory

• Relativistic covariance (and gauge invariance) only in final results
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