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My story for you

Foundation: The essence of nonequilibrium thermodynamics far
beyond equilibrium has been deeply understood from various
perspectives; an elegant geometric formulation is available
(energy — Poisson bracket, entropy — dissipation bracket).

Innovation: Classical nonequilibrium thermodynamics is so
well-developed and beautifully structured that even a dummy
can generalize it to dissipative quantum systems.

Provocation: Quantum mechanics of the 1920s is a highly
problematic idealization of a truly fundamental *first principles”
theory, which is dissipative quantum mechanics

(rule of thumb: a healthy theory should not confuse Einstein).
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system of interest measurement



quantum weak classical
subsystem coupling environment

quantum computer world of human users

quantum computing, quantum information processing,
quantum communication, quantum cryptography, quantum simulation,
quantum metrology, quantum sensing, quantum imaging, ...



GENERIC: Quantum Generalization
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Canonical correlations as new geometric object for quantum dissipation:
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Quantum dissipation:
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Nonlinear Thermodynamic Quantum Master Equation
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Nonlinear Thermodynamic Quantum Master Equation

Quantum subsystem:
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Abstract — Dirac’s method of classical analogy is employed to include quantum degrees of
freedom into a geometric framework of nonequilibrium thermodynamics. The proposed formulation
of dissipative quantum mechanics builds entirely upon the geometric structures implied by
commutators and canonical correlations. A lucid formulation of a nonlinear quantum master
equation follows from the thermodynamic structure. The approach is applicable even at very low
temperatures and complex classical environments with internal structure can be handled readily.
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The quantum master equation obtained from two different thermodynamic arguments is seriously nonlinear. We
argue that, for quantum systems, nonlinearity occurs naturally in the step from reversible to irreversible equations
and we analyze the nature and consequences of the nonlinear contribution. The thermodynamic nonlinearity
naturally leads to canonical equilibrium solutions and extends the range of validity to lower temperatures. We
discuss the Markovian character of the thermodynamic quantum master equation and introduce a solution strategy
based on coupled evolution equations for the eigenstates and eigenvalues of the density matrix. The general ideas
are illustrated for the two-level system and for the damped harmonic oscillator. Several conceptual implications
of the nonlinearity of the thermodynamic quantum master equation are pointed out, including the absence of a
Heisenberg picture and the resulting difficulties with defining multitime correlations.

DOI: 10.1103/PhysRevA.82.052119 PACS number(s): 03.65.Yz, 05.70.Ln

Some simple examples!



Some Nice Features

1. Proper quantum regression theorem
2. Canonical density matrix for equilibrium with a heat bath

3. Positive definite density matrix

Because Inp drives irreversible dynamics!
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Some Nice Features

. Proper quantum regression theorem

Canonical density matrix for equilibrium with a heat bath

Positive definite density matrix

Feedback equation for environment

Fulfils Ehrenfest’s theorem (consistency with classical mechanics)

Environments and couplings of enormous generality can be
handled, including open environments

“Markovian behavior” of full quantum-classical system

. Equivalent stochastic simulations in Hilbert space can be performed



My story for you

Foundation: The essence of nonequilibrium thermodynamics far
beyond equilibrium has been deeply understood from various
perspectives; an elegant geometric formulation is available
(energy — Poisson bracket, entropy — dissipation bracket).

Innovation: Classical nonequilibrium thermodynamics is so
well-developed and beautifully structured that even a dummy
can generalize it to dissipative quantum systems.

Provocation: Quantum mechanics of the 1920s is a highly
problematic idealization of a truly fundamental *first principles”
theory, which is dissipative quantum mechanics

(rule of thumb: a healthy theory should not confuse Einstein).




| will not rest until | can write a short and simple stochastic
computer simulation program that

* is based on a thermodynamic quantum master equation

« can be appreciated and reproduced by any motivated
third-year student of physics

 can produce high-precison results for the anomalous
magnetic dipole moment of the electron

(stochastic particle simulation of quantum electrodynamics)
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We build quantum field theory on the thermodynamic master equation for dissipative quantum systems.
The vacuum is represented by a thermodynamic equilibrium state in the low-temperature limit. All
regularization is consistently provided by a friction mechanism; with decreasing friction parameter, only
degrees of freedom on shorter and shorter length scales are damped out of a quantum field theory.
No divergent integrals need to be manipulated. Renormalization occurs as a tool to refine perturbation
expansions, not to remove divergences. Relativistic covariance is recovered in the final results. We
illustrate the proposed thermodynamic approach to quantum fields for the ¢* theory by calculating the
propagator and the S function, and we offer some suggestions on its application to gauge theories.

DOI: 10.1103/PhysRevD.84.065007 PACS numbers: 03.70.+k, 05.10.Cc, 05.70.Ln, 11.10.Wx
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Basic Ingredients

Thermodynamic quantum master equation for system dynamics
Linearization around equilibrium at low temperature

Friction mechanism for dynamic smoothing of local details
Renormalization group analysis for refining perturbation theory

Relativistic covariance (and gauge invariance) only in final results
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