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LRD: Cailletet&Mathias, 1886

Law of Rectilinear Diameter

nd =
nl + ng
2nc

= 1 + A
Tc − T

Tc
.
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Zeno-Line

Z = P/(nT) = 1

Z =
P

nT
= 1− 2π n

3T

∫
r3
∂ Φ(r)

∂ r
g2(r; n,T) d r ,

g2 - pair correlation function.
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Z = 1⇒
∫

r3
∂ Φ(r)

∂ r
g2(r; n,T) d r = 0

Condition:

g2(r; n,T) = 0

de�nes �ideal-gas� states (line n = 0 included trivially)
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Zeno-Line

Z = 1⇒
∫

r3
∂ Φ(r)

∂ r
g2(r; n,T) d r = 0

Condition:

g2(r; n,T) = 0

de�nes �ideal-gas� states (line n = 0 included trivially)

Complete con�gurational order

n = nB - dense packing ⇒ g2 = 0
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1− n b
− a n2
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1− n b
− a n2

P(n,T)

nT
=

1

1− n b
− a

n

T
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Batchinsky law

P(n,T)

nT
=

1

1− n b
− a

n

T
= 0

P(n,T)

nT
= 1⇒ n

nB
+

T

TB
= 1 , nB = 1/b ,TB = a/b
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Batchinsky law

For each α ≤ α0, there exists B0(α) such that Emax = Emin and, therefore,

d2E

dr2
= 0. (33)

On the graph (α,E) the relation Emax = Emin determines the analog of the Zeno line.
Let us now represent the Zeno line on the graph (ρ, T ).

Figure 1: T–ρ diagram for gases corresponding to simple liquids, Tr = T/Tcr, ρr = ρ/ρcr. The
Z = PV

NT = 1.0 line (Zeno–line) on the phase diagram. For states with Z > 1.0 (hard fluids)
repulsive forces dominate. For states where Z < 1.0 (soft fluids) attractive forces dominate.

Further, for a fixed ρ, which is proportional to α, we obtain the asymptotic behavior

E(r) =
r2Φ(r)− ρr4

B2 − r2
, as B → ∞,

where B is the impact parameter, and also the ratio of the difference of the maximal and minimal
points of E(r) to the maximal point. By our correspondence principle, this ratio corresponds to
the compressibility factor

Z =
Emax − Emin

Emax

and, as B → ∞, for a given ρ, we obtain the minimum value of Z on the graph (ρ, T ). The
Zeno line has already been obtained by the rule given above.

The value of the compressibility factor Z is already plotted along the y axis. We must now
establish the correspondence with the temperature scale. To do this, consider the ordinate axis,
i.e., the case ρ = 0. The point 0.8ε, where ε is the depth of the well of the Lennard-Jones
potential corresponds to the Boyle temperature.

For ρ = 0, let us find the point Z̃ = Emin/Emax equal to Zcr = 0.29. This point corresponds
to 3

2Emax, which, in turn, corresponds to the critical temperature4. The ratio of this point to

4The 3/2 coefficient is due to the fact that the value Emax corresponds to the bottom of the well (after turning
the wells upside down as mentioned above). It means that dimers lost 2/3 of their degrees of freedom when due
to viscosity they fell on the bottom of the well. This follows from the fact that circular motion takes place on the
bottom of a vessel. Hence, the initial energy of dimers was in 3/2 times larger. Since there is no a similar lost
for TB , for Z = Zcr, we have relation Tcr/TB = 3/2(Emax(Z)/0.8E).According to the newest data [1] for Kr, Xe,
N2, O2 and ethane the value of Tcr/TB is equal to 0.39; compare Table 1.

10

Figure : Simple �uid phase diagram (methane), T̃ = T/Tc, ñ = n/nc,
Z = P/(nT) = 1 - Zeno-Line. States Z > 1 �hard �uid�, Z < 1 �soft
�uid� (Ben-Amotz&Herschbach, 1990).
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Triangle of Liquid-Gas States

Characteristic properties (E. Apfelbaum and V. Vorob'ev)

ZL is the tangent to the binodal in n = nB , T→ 0

�Median�
n

nB/2
+

T

TB
= 1

at �low� temperatures is close to the (rectilinear) diameter
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Simplest �uid - Ising model (lattice gas)

H = −J
∑

〈 ij 〉

ni nj − µ
∑

i

ni , ni = 0, 1

Order parameter x = 〈 ni 〉 - lattice density.
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Liquid vs. Gas

J.D. van der Waals, Nobel lecture, 1910

... Thus I conceived the idea that there is no essential di�erence

between the gaseous and the liquid state of matter - that the

factors which, apart from the motion of the molecules, act to

determine the pressure must be regarded as quantitatively

di�erent when the density changes and perhaps also when the

temperature changes, but that they must be the very factors

which exercise their in�uence throughout. And so the idea of

continuity occurred to me ...
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Figure : Correspondence between the linear elements of the phase
diagrams. Zeno-Line and Zeno-median are shown. The latter
coincides with the rectilinear diameter.
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Figure : Correspondence between the linear elements of the phase
diagrams. Zeno-line, generally, is not linear and we introduce the
linear element T/T∗ + n/n∗ = 1
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Correspondence between linear elements

critical isotherm tc = 1⇔ T = Tc

rectilinear diameter x = 1/2⇔ 2n

n∗
+

T

T∗
= 1 ,

Zeno-Line x = 1⇔ n

n∗
+

T

T∗
= 1 .

n/n∗ =
x

1 + a t
, T/T∗ =

a t

1 + a t
, a =

Tc

TB − Tc
.
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Correspondence between linear elements

critical isotherm tc = 1⇔ T = Tc

Zeno-median x = 1/2⇔ 2n

n∗
+

T

T∗
= 1 ,

Zeno-Line x = 1⇔ n

n∗
+

T

T∗
= 1 .

n/n∗ =
x

1 + a t
, T/T∗ =

a t

1 + a t
, a =

Tc

TB − Tc
.
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for Al, Cu, and W really do not belong to the binodals, they
belong to part of the isobar curves. It is followed from
thermodynamical consideration27 that the isobar curves for the
liquid state go very close to the binodals. Therefore, the
measured isobars17-21 practically coincide with the correspond-
ing binodals. However, it is also possible that the experimental

points can lie at the Zeno-line, as takes place for Al. To take
into account the possible difference, we somewhat increase the
value of the criterion δ, i.e. δ < 0.01.

The results of our calculations of the critical and Boyle point
parameters are collected in Table 3. Besides, in this table, one
can find the values of the critical parameters as obtained by
other authors. We also present the corresponding Figure 4 with
the binodals and the Zeno-lines for these substances. It should
be noted that there is substantial scatter in the experimental data
for W. Among them, we choose data from refs 18 and 21 since
they give the most reasonable values of the critical parameters.

Our findings are consistent with earlier known results.
Moreover, they correspond to the theoretical and experimental
information on the phase coexistence curves and critical and
Boyle point parameters. This suggests that these findings are
well justified.

Universal Triangle of States and Liquid Branch of the
Binodal

Similarly to earlier work,7 let us present the binodals of all
model systems and real substances considered above on the
density-temperature plane using the coordinates reduced to the
Zeno-line parameters, F′ ) F/FB and T′ ) T/TB. In these
coordinates, the Zeno-line is a straight line, universal for all

Figure 4. Phase coexistence curves, Zeno-line, and critical parameters
for metals Al (a), Cu (b), and W (c). The symbols are experimental
data on the binodal. Line 1 is the results of our calculations of the
liquid branch of the binodal according to eq 3. Straight line 2 is the
Zeno-line.

TABLE 3: Critical and Zeno-Line Parameters for Metal
Liquids Al, Cu, and W

metal Tc, K Fc, g/cm3 method ref TB, K FB, g/cm3

Al 6378 0.45 this work 12888 2.57
8860 0.28 scaling 22
8000 0.64 extrapolation 23

Cu 7093 1.95 this work 15593 8.6
7620 1.4 scaling 22
8390 2.4 extrapolation 23

W 12387 4.92 this work 29131 20.1
12500 4.52 26

Figure 5. Dependence of the temperature and density along the phase
coexistence curves on parameters reduced to the Zeno-line parameters
for the different model systems and substances: (line 1) Z ) 1 line,
(line 2) critical points line, (line 3) Lennard-Jones numerical modeling
of ref 11, (line 4) according to the van der Waals equation. The symbols
correspond to the different substances. We have added the average
diameter for Hg, water, and substances satisfying the corresponding
states law.

Figure 6. Dependence of the modified density (eq 7) along the liquid
branch of the binodal via T/Tc. for Hg, Cs, CO2, and Al.

13068 J. Phys. Chem. B, Vol. 112, No. 41, 2008 Apfelbaum and Vorob’ev

Apfelbaum &Coll, J. Phys. Chem. B, 2006, v. 110, 8474
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Tc = T∗
z

1 + z
, nc =

n∗
2(1 + a)

.

Line of the critical points for

the substances with z �xed:

nc
nB

+
Tc

TB
=

2z + 1

2 ( 1 + z )
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Global isomorphism

n = n∗
x

1 + a t
, T = T∗

a t

1 + a t
,

x =
n

n∗
( 1− T/T∗ ) , t =

1

a

T/T∗
1− T/T∗

a =
Tc

T∗ − Tc

- thermodynamic similarity class parameter. For 3D LJ a = 1/2.

T/T∗ + n/n∗ = 1⇔ x = 1

T∗ - Boyle temperature in vdW approximation,

T∗ = TvdW
B = avdW/b and:

n∗ = T∗
B′2 (T∗ )

B3 (T∗ )
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Mapping between binodals of the lattice gas and the �uid

Ising model (lattice gas) binodal maps onto the binodal of the

�uid

n(t) = n∗
x(t)

1 + a t
, T(t) = T∗

a t

1 + a t
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Mapping between binodals of the lattice gas and the �uid

Figure : Binodal of 2D Ising model (Onsager exact solution).

x(t) = 1/2± f(t)1/8 , f(t) = 1− 1

sinh4 ( 2J/t )
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Mapping between binodals of the lattice gas and the �uid

Figure : Binodal of 2D Lennard-Jones �uid a = 1/3,

T∗ = 2.03 ≈ T
(vdW)
B

= 2 and n∗ = 0.971 (n
(theor)
∗ = 0.91) and the

simulations data (Smith& Frenkel).
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Mapping between binodals of the lattice gas and the �uid

Figure : Binodal of 3D L-J �uid (blue) obtained via mapping (with
a = 1/2) of the binodal of 3D Ising model (numerical data). Red line
is the Guggenheim cubic law.
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Scaling nature of z

Scaling symmetry

Di�erent liquids di�ers by Tc and nc because of di�erent scales

for energy interaction and the molecular sizes. The lattice gas

hamiltonian obeys the scaling symmetry:

tc → λ2 tc , xc → λ−1 xc
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Di�erent liquids di�ers by Tc and nc because of di�erent scales

for energy interaction and the molecular sizes. The lattice gas

hamiltonian obeys the scaling symmetry:

tc → λ2 tc , xc → λ−1 xc

nc/n∗ =
1

2 ( 1 + a )
, Tc/T∗ =

a

1 + a
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Scaling symmetry

Di�erent liquids di�ers by Tc and nc because of di�erent scales

for energy interaction and the molecular sizes. The lattice gas

hamiltonian obeys the scaling symmetry:

tc → λ2 tc , xc → λ−1 xc

nc/n∗ =
1

2 ( 1 + a )
, Tc/T∗ =

a

1 + a

d ln
(

Tc
T∗

)

d ln
(

nc
n∗

) = −1
a
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Consistency condition

The attractive part of the potential in d dimensions has the

form Φattr(r) ∼ r−(d+ε) , ε > 0. The energy of interaction is:

Eint =
1

2

∑

i,j

Φattr(|ri − rj|) =
V

2

∫
Φattr(r12) n(r1) n(r2) dr12

nc ∼
1

rdc
, Tc ∼ Φ(rc) ∼

1

n
1+ε/d
c

naive scaling:
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∫
Φattr(r12) n(r1) n(r2) dr12
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1

rdc
, Tc ∼ Φ(rc) ∼

1

n
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c

naive scaling:

nc → nc(0) e−λ , Tc → Tc(0) e( 1+ε/d )λ .

Kulinskii V. L. Global isomorphism



Global isomorphism of the lattice gas and the �uid
Surface tension

Spinodal of the �uid
Projective isomorphism

Consistency condition

naive scaling:

−1
a

=
d ln

(
Tc
T∗

)

d ln
(

nc
n∗

) = −
(
1 +

ε

d

)
⇒ a =

1

1 + ε
d

.

Kulinskii V. L. Global isomorphism



Global isomorphism of the lattice gas and the �uid
Surface tension

Spinodal of the �uid
Projective isomorphism

Consistency condition

naive scaling:

−1
a

=
d ln

(
Tc
T∗

)

d ln
(

nc
n∗

) = −
(
1 +

ε

d

)
⇒ a =

1

1 + ε
d

.

For LJ-systems with Φattr ∝ r−6 in d dimensions z = d
6
:

d = 2 : a = 1/3 , d = 3 : a = 1/2
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CP in d-dimensions

Tc

T∗
=

1

2 + ε
d

,
nc
n∗

=
1 + ε

d

2
(
2 + ε

d

) .

T∗ =
4d

6− d
, avdW = 2d−1

4d

6− d
, b = 2d−1 ,

hard core volume is normalized so that n∗ = 1.
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Comparison with the simulations

LJ �6-12� �uid 2D 3D 4D 5D

Tc 0.5 1.33 3.2 9.1

T
(num)
c 0.515 1.312 3.404 8.8 (?)

nc 0.375 0.33 0.3 0.27

n
(num)
c 0.355 0.316 0.34 -
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Binodal as function of a
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Binodal as function of z

a→∞ Flory θ-point?
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�particle-hole� symmetry
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Correspondence of thermodynamic states

n/n∗ =
x

1 + a t
, T/T∗ =

a t

1 + a t
.
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Connection between lattice and �uid

Proposition

Projective form of the lattice-�uid transformation is the

consequence of the projective nature of the thermodynamic

limit:

FLUID




U

S

V

N


 = L̂




U
S
N
N


 Ising Model
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consequence of the projective nature of the thermodynamic

limit:

FLUID
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S
N
N


 Ising Model

Kulinskii V. L. Global isomorphism



Global isomorphism of the lattice gas and the �uid
Surface tension

Spinodal of the �uid
Projective isomorphism

Relation between bulk thermodynamic potentials

n/n∗ =
x

1 + a t
, n =

∂ J

∂ µ

∣∣∣∣
T

, x =
∂G

∂ h

∣∣∣∣
t

we get relation between grand potentials:
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Relation between bulk thermodynamic potentials

n/n∗ =
x

1 + a t
, n =

∂ J

∂ µ

∣∣∣∣
T

, x =
∂G

∂ h

∣∣∣∣
t

we get relation between grand potentials:

J(µ,T,V) = P(µ,T),V = G ( h(µ,T), t(T),N )
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Relation between bulk thermodynamic potentials

n/n∗ =
x

1 + a t
, n =

∂ J

∂ µ

∣∣∣∣
T

, x =
∂G

∂ h

∣∣∣∣
t

we get relation between grand potentials:

J(µ,T,V) = P(µ,T)V = G ( h, t,N ) = N g(h, t)

µ− µ0(T) =
h

1 + a t

µ0(T) - chem. potential along coexistence curve
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Relation between surface thermodynamic potentials (?)

The surface tension of 2D Ising model is determined by the next

eigenvalue of the transfer matrix Λ1 < Λmax:

Σ
(lat)
m×n = Λm

max + Λm
1 + . . .

VT lnΞV(µ,T) = VP + σA = N g + sA = N t lnΣN (h, t)
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The surface tension of 2D Ising model is determined by the next

eigenvalue of the transfer matrix Λ1 < Λmax:

Σ
(lat)
m×n = Λm

max + Λm
1 + . . .

VT lnΞV(µ,T) = VP + σA = N g + sA = N t lnΣN (h, t)
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Surface tension of 2D Ising model

s(t) = 2 + t ln

(
tanh

1

t

)
= 4 (1− t/tc) + . . .
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Surface tension of 2D LJ �uid

σLJ(T) = s(t(T)) =
16

3
(1− T/Tc) + . . . ,
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Surface tension of 2D LJ �uid
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Surface tension of lattice model

Local representation of the surface tension

σ = t
(
〈 η 〉gas − 〈 η 〉liq

)
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Surface tension of lattice model

Local representation of the surface tension

σ = t
(
〈 η 〉gas − 〈 η 〉liq

)

Bragg-Williams approximation η = 1
2

∑
i

p(si):
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Surface tension of lattice model

Local representation of the surface tension

σ = t
(
〈 η 〉gas − 〈 η 〉liq

)

Bragg-Williams approximation η = 1
2

∑
i

p(si):

σ =
t

2 a
( xliq − xgas ) ln

xliq
xgas

a - lattice spacing
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Surface tension of lattice model

Local representation of the surface tension

σ = t
(
〈 η 〉gas − 〈 η 〉liq

)

Modi�ed form:

σ =
t

2 ξ1−η
( xliq − xgas ) ln

xliq
xgas

∼ ( xliq − xgas )2

ξ1−η
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Local representation of the surface tension

σ = t
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Modi�ed form:
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Surface tension of lattice model

Local representation of the surface tension

σ = t
(
〈 η 〉gas − 〈 η 〉liq

)

Modi�ed form:

σ =
t

2 ξ1−η
( xliq − xgas ) ln

xliq
xgas

∼ ( xliq − xgas )2

ξ1−η

ξ(t) - e�ective thickness of the interface
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Test: 2D Ising model
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Test: 2D Ising model

ΞHtL-1

T�Tc
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1.0

1.2

Figure : E�ective interfacial thickness, η = 1/4, ν = 1.
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σ =
t

2 ξ1−η
( xliq − xgas ) ln

xliq
xgas

∼ ( xliq − xgas )2

ξ1−η

ξ = (1/t− 1)−ν , η ≈ 0.03 - Fisher's critical exponent, ν taken as

�tting parameter
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σ =
t

2 ξ1−η
( xliq − xgas ) ln

xliq
xgas

∼ ( xliq − xgas )2

ξ1−η

ξ = (1/t− 1)−ν , η ≈ 0.03 - Fisher's critical exponent, ν taken as

�tting parameter
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σ =
t

2 ξ1−η
( xliq − xgas ) ln

xliq
xgas

∼ ( xliq − xgas )2

ξ1−η

ξ = (1/t− 1)−ν , η ≈ 0.03 - Fisher's critical exponent, ν taken as

�tting parameter
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Surface tension of 3D �uid

xliq,gas(T) =
1

2 (1 + a)

ρliq,gas

1− T
Tc

a
1+a

, t(T) =
tc

1 + a

T/Tc

1− T
Tc

z
1+a
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Surface tension of 3D �uid

Figure : Temperature dependence of the e�ective interfacial thickness
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Surface tension of 3D �uid

Microscopic form (Kirkwood-Bu�):

σ∞ =
1

4

∫
dz1

∫
d~r r u′(r) (1− 3 cos2 θ) n2(z1, z2, r) ,

Fluctuational (mesoscopic) form (Triezenberg-Zwanzig, 1972):

σ∞ = T

∫∫
dz1 dz2

d n(z1)

d z1
K2(z1, z2)

d n(z2)

d z2

K2(z1, z2) =
1

4

∫
dd−1ρ ρ2C2 ( z1, z2; ρ )
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Surface tension of 3D �uid

Microscopic form (Kirkwood-Bu�):

σ∞ =
1

4

∫
dz1

∫
d~r r u′(r) (1− 3 cos2 θ) n2(z1, z2, r) ,

Fluctuational (mesoscopic) form (Triezenberg-Zwanzig, 1972):

σ∞ = T

∫∫
dz1 dz2

d n(z1)

d z1
K2(z1, z2)

d n(z2)

d z2

K2(z1, z2) =
1

4

∫
dd−1ρ ρ2C2 ( z1, z2; ρ )
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Surface tension of 3D �uid

1

T

(
∂ p

∂ n

)

T

= 1− n

∫
C2(n; r12) dr12 ,

(
∂ p

∂ n

)

T

∝ |τ |γ T→ Tc .

C2(n; r12) ∝ |τ |2−α+γ ∝ 1

ξd+2−η

K2 =
1

4

∫
dd−1ρ ρ2C2 ( z1, z2; ρ ) ∝ ξd+1

ξd+2−η
∝ 1

ξ1−η
.
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Surface tension of 3D �uid

Fluctuational (mesoscopic) form (Triezenberg-Zwanzig, 1972):

σ∞ = T

∫∫
dz1 dz2

d n(z1)

d z1
K2(z1, z2)

d n(z2)

d z2
∝ |τ |µ

K2(z1, z2) =
1

4

∫
dρ ρ2C2 ( z1, z2; ρ )

∝ 1

ξ1−η

d ν = 2− α , 2− α = β + γ , γ = ν (2− η) , σ ∝ |τ |µ

σ∞ ∼
(nliq − ngas)

2

ξ1−η
∝ |τ |2β+ν(1−η) = |τ |(d−1)ν
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Surface tension of 3D �uid

Fluctuational (mesoscopic) form (Triezenberg-Zwanzig, 1972):

σ∞ = T

∫∫
dz1 dz2

d n(z1)

d z1
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d n(z2)

d z2
∝ |τ |µ

K2(z1, z2) =
1

4

∫
dρ ρ2C2 ( z1, z2; ρ )

∝ 1

ξ1−η

d ν = 2− α , 2− α = β + γ , γ = ν (2− η)

, σ ∝ |τ |µ

σ∞ ∼
(nliq − ngas)

2

ξ1−η
∝ |τ |2β+ν(1−η) = |τ |(d−1)ν
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Fluctuational (mesoscopic) form (Triezenberg-Zwanzig, 1972):

σ∞ = T

∫∫
dz1 dz2

d n(z1)

d z1
K2(z1, z2)

d n(z2)

d z2
∝ |τ |µ

K2(z1, z2) =
1

4

∫
dρ ρ2C2 ( z1, z2; ρ )

∝ 1

ξ1−η

d ν = 2− α , 2− α = β + γ , γ = ν (2− η) , σ ∝ |τ |µ

σ∞ ∼
(nliq − ngas)

2
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∝ |τ |2β+ν(1−η) = |τ |(d−1)ν
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Fluctuational (mesoscopic) form (Triezenberg-Zwanzig, 1972):

σ∞ = T

∫∫
dz1 dz2

d n(z1)

d z1
K2(z1, z2)

d n(z2)

d z2
∝ |τ |(d−1) ν

K2(z1, z2) =
1

4

∫
dρ ρ2C2 ( z1, z2; ρ ) ∝ 1

ξ1−η

d ν = 2− α , 2− α = β + γ , γ = ν (2− η) , σ ∝ |τ |(d−1)ν

σ∞ ∼
(nliq − ngas)

2

ξ1−η
∝ |τ |2β+ν(1−η) = |τ |(d−1)ν
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Tolman length

De�nition

∆p =
2σ∞
R

(
1− δT

R
+ . . .

)
⇒ σ = σ∞

(
1− 2

δT
R

+ . . .

)
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Tolman length

De�nition

∆p =
2σ∞
R

(
1− δT

R
+ . . .

)
⇒ σ = σ∞

(
1− 2

δT
R

+ . . .

)

Microscopic form δT (Bokhuis&Bedeaux, 1992)

δT = − 1

8σ∞

∫
dz1

∫
d~r12 u

′(r) r (1−3 cos2 θ) (z1+z2) n2(z1, z2, r) .
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Tolman length

Question

Does the �uctuational (mesoscopic) form similar to

Trietzenberg-Zwanzig for σ∞ exist for δT?
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Tolman length

Square-gradient approx (Fisher&Wortis, PRB (1984))

δT =

+∞∫
−∞

z n′(z) dz

+∞∫
−∞

n′(z) dz

−

+∞∫
−∞

z n′2(z) dz

+∞∫
−∞

n′2(z) dz

n(z) is the equilibrium density pro�le.
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Tolman length

Square-gradient approx (Fisher&Wortis, PRB (1984))

δT =

+∞∫
−∞

z n′(z) dz

+∞∫
−∞

n′(z) dz

−

+∞∫
−∞

z n′2(z) dz

+∞∫
−∞

n′2(z) dz

n(z) is the equilibrium density pro�le.

Anisimov's expression, PRL (2007)

δT '
nd − 1

nliq − ngas
ξ
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Tolman length
Square-gradient approx (Fisher&Wortis, PRB (1984))

δT =

+∞∫
−∞

z n′(z) dz

+∞∫
−∞

n′(z) dz

−

+∞∫
−∞

z n′2(z) dz

+∞∫
−∞

n′2(z) dz

n(z) is the equilibrium density pro�le.

Anisimov's expression, PRL (2007)

δT '
nd − 1

nliq − ngas
ξ

Symmetry

If there is �particle-hole� symmetry (Ising model) then δT ≡ 0.
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TZ-like form for the Tolman length

We start with B&B expression:

δT = − 1

8σ∞

∫
dz1

∫
d~r12 (z1+z2) u′(r) r (1−3 cos2 θ) n2(z1, z2, r)

− 1

4σ∞

∫
dz1 dz2 z1 n

′(z1)K2(1, 2) n′(z2)

− 1

4σ∞

∫
dZd~r z

(
x
∂ u

∂ x
− z

∂ u

∂ z

)
n2

(
~R, ~R +~r

)
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TZ-like form for the Tolman length

proceed with:

δT = − 1

8σ∞

∫
dz1

∫
d~r12 (2z1 + z12) u′(r) r (1− 3 cos2 θ)n2(z1, z2, r) =

− 1

4σ∞

∫
dz1 dz2 z1 n

′(z1)K2(1, 2) n′(z2)

− 1

4σ∞

∫
dZd~r z

(
x
∂ u

∂ x
− z

∂ u

∂ z

)
n2

(
~R, ~R +~r

)
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TZ-like form for the Tolman length

proceed with:

δT = − 1

8σ∞

∫
dz1

∫
d~r12 (2z1 + z12) u′(r) r (1− 3 cos2 θ)n2(z1, z2, r) =

− 1

4σ∞

∫
dz1 dz2 z1 n

′(z1)K2(1, 2) n′(z2)

− 1

4σ∞

∫
dZd~r z

(
x
∂ u

∂ x
− z

∂ u

∂ z

)
n2

(
~R, ~R +~r

)
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Square Gradient approximation = local approximation for
K2(1, 2), so the �rst term goes to:

− 1

4σ∞

∫
dz1 dz2 z1 n

′(z1)K2(1, 2) n′(z2)⇒ −

+∞∫
−∞

z n′2(z)dz

+∞∫
−∞

n′2(z) dz

the second:

− 1

4σ∞

∫
dZd~r z

(
x
∂ u

∂ x
− z

∂ u

∂ z

)
n2

(
~R, ~R +~r

)
⇒

+∞∫
−∞

z n′(z) dz

+∞∫
−∞

n′(z) dz

+. . .?
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Square Gradient approximation = local approximation for
K2(1, 2), so the �rst term goes to:

− 1

4σ∞

∫
dz1 dz2 z1 n

′(z1)K2(1, 2) n′(z2)⇒ −

+∞∫
−∞

z n′2(z)dz

+∞∫
−∞

n′2(z) dz

the second:

− 1

4σ∞

∫
dZd~r z

(
x
∂ u

∂ x
− z

∂ u

∂ z

)
n2

(
~R, ~R +~r

)
⇒

+∞∫
−∞

z n′(z) dz

+∞∫
−∞

n′(z) dz

+. . .?
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Spinodal

Figure : Binodal and spinodal for LJ �uid (Imre et al., JCP (2008))
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Spinodal

Corollary of the Global Isomorphism

The law of rectilinear diameter holds also for the spinodal
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Conclusions and future routes

There is the 1-1 correspondence between equilibrium states

of simple LJ-�uid and those of lattice gas (Ising model);

not only bulk properties but also the surface tension can be

build up via mapping the corresponding lattice gas

characteristics

Nonzeroth Tolman length is e�ect of the asymmetry

between liquid and gas in terms of the density

Spinodal must have the rectilinear diameter

nucleation theory lattice models ⇒ �uids

Is it possible to connect the transport coe�cients of the

�uid and the lattice gas?
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The END

Thank you for attention!
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