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LRD: Cailletet&Mathias, 1886

Law of Rectilinear Diameter

Global isomorphism



Global isomorphism of the lattice gas and the fluid
Projective isomorphism

LRD: present time

Liquid—-vapor coexistence curves for model potentials 9167
Okumura&Yonezawa, JCP v.113 (2000)

L 76 =
1.0 | e ‘o Lge »
L] ‘a% 9-6 e
& % LJ10-6
3 Li126 o
7 3 ﬁ“; LJ156 -
5 i 4 % LJ18-6
& 0.8 [ b\ LJ20-6 < |
: b & LJ32-6 -
% X*i&;v Morse  +
A “h. SW o«
NES o
R I3
0.6 ¥ " .
& &
'3( !’i(
0 1 2 3
Ps

FIG. 8. The liquid—vapor coexistence curves and the diameters in the scaled
temperature 7',= 7%/ T —density p,=p*/p¥ plane.
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P 2 )
Z 1-— wn/r38 (r)gz(r;n,T)dr,

“uT 3T ar

go - pair correlation function.
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Zeno-Line

Z—1:>/ 8¢(r go(r;n, T)dr=0

Condition:
go(r;n, T)=0

defines “ideal-gas“ states (line n = 0 included trivially)

Complete configurational order

n = ng - dense packing = go =0

Global isomorphism



Global isomorphism of the lattice gas and the fluid
Projective isomorphism

Batchinsky law




Global isomorphism of the lattic s and the fluid
e isomorphism

Zeno-Line

= nT 2
~ 1—nb
P(n,T) 1 n

nT :1—1r1b_aLT:0

Global isomorphism



Global isomorphis f the lattice gas and the fluid
Projective isomorphism

Batchinsky law

Global isomorphism



Global isomorphism of the lattice gas and the fluid

Projective isomorphism

Batchinsky law

e ]
! =
I —

/
| | % h
1y
/
| % /
\ s
o0 0y
1 — 5
R=TI] T
Critical point I‘J‘t‘

AN
0 1

Figure : Simple fluid phase diagram (methane), T = T/T,, i = n/n,

Z=P/(nT)=1- Zeno-Line. States Z > 1 “hard fluid®, Z < 1 “soft
fluid“ (Ben-Amotz&Herschbach, 1990).
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Triangle of Liquid-Gas States

Characteristic properties (E. Apfelbaum and V. Vorob’ev)
@ ZL is the tangent to the binodal inn =ng, T — 0

o “Median*
n T

T |
nB/2+TB

at “low" temperatures is close to the (rectilinear) diameter
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Simplest fluid - Ising model (lattice gas)

t 02 04 06 08 10

Order parameter x = (n;) - lattice density.
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Liquid vs. Gas

J.D. van der ls, Nobel lecture, 1910

... Thus T conceived the idea that there is no essential difference
between the gaseous and the liquid state of matter - that the
factors which, apart from the motion of the molecules, act to
determine the pressure must be regarded as quantitatively
different when the density changes and perhaps also when the
temperature changes, but that they must be the very factors
which exercise their influence throughout. And so the idea of
continuity occurred to me ...
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diameter]

x=0 x=112 x=1| X

Figure : Correspondence between the linear elements of the phase
diagrams. Zeno-Line and Zeno-median are shown. The latter
coincides with the rectilinear diameter.
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diameter]

x=0 x=12 x=1} X

Figure : Correspondence between the linear elements of the phase
diagrams. Zeno-line, generally, is not linear and we introduce the
linear element T/T, +n/n, =1
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respondence between linear elements

critical isotherm t.=1< T =TT,

e . 2n T
rectilinear diameter x=1/2< — + T = 1,
n* *
T
Zeno-Line x=1¢& —4—=1.
n, T
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spondence between linear elements

critical isotherm t.=1< T =TT,

- . 2n T
rectilinear diameter x=1/2< — + T = 1,
n* *
T
Zeno-Line x=1& —+—=1.
n, T
X at T,

P S /g P L
n/ne =y / l+tat’ &7 Tg—T.
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F|g5 —=—Substanses obeying to
the corresponding states law
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Figure 5. Dependence of the temperature and density along/the phase
coexistence curves on parameters reduced to the Zeno-line parameters
for the different model systems and substances: (line 1) Z = 1 line,
(line 2) critical points line, (line 3) Lennard-Jones numerical modeling
of ref 11, (line 4) according to the van der Waals equation. The symbols
correspond to the different substances. We have added the average
diameter for Hg, water, and substances satisfying the corresponding
states law.
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Fig.5 ~—Substanses obeying to
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Figure 5. Dependence of the temperature and density alofigthe phase
coexistence curves on parameters reduced to the Zeno-line parameters e TC 27 + 1
for the different model systems and substances: (line 1) Z = 1 line, —

(line 2) critical points line, (line 3) Lennard-Jon,

i s numerical modeling -
of ref 11, (line 4) according to the van der Waals equation. The symbols nB TB 2 ( ]_ —I— A )
correspond to the different substances. We have added the average
diameter for Hg, water, and substances satisfying the corresponding
states law.
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=0, ——, T=T.——,
. 1+ at 1+ at

n 1 T/T.
= — (1-T/T,), t= - ——
* n*( /T4 al—T/T.

Kulinskii V. L. Global isomorphism



Global isomorphism of the lattice gas and the fluid
Projective isomorphism

Global isomorphism

n=n, ——, T:T*Lt7
1+ at 1+ at
n 1 T/T.
= — (1-T/T,), t= - ——
* n*( /T4 al—T/T.
T
a=—
T, — T,

- thermodynamic similarity class parameter. For 3D LJ a = 1/2.
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Global isomorphism

n:n*i, T:T*Lt7
1+at 1+at
n 1 T/T.
-2 -1/T.), f= -l
x n*( /T-) al—T/T,
T
a=————
T, —T.

- thermodynamic similarity class parameter. For 3D LJ a = 1/2.
T/Ti+n/n.=1lex=1

T, - Boyle temperature in vdW approximation,
T* = TV = a,qw/b and:
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Mapping between binodals of the lattice gas and the fluid

Ising model (lattice gas) binodal maps onto the binodal of the
fluid

t t
X() ’T(t):T*ilj— :
a

n(t) = n.
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Mapping between binodals of the lattice gas and the fluid

t CP
10
08

0.2 0.4 05 06 0.8 1.0

Figure : Binodal of 2D Ising model (Onsager exact solution).

1

x(t) = / -1
(t)=1/2+f1t)Y8, f(t)=1 S (20
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Mapping between binodals of the lattice gas and the fluid

045 |
Theory 1 = 0.375 TC: 0.5
0.40
Simulation N =0.364 T =0.5075
0.35 @ Smith&Frenkel, JCP 94 (1991) 5663

@® W Jiang&Gubbins, Mol.Phys. 86 (1995) 599

‘ ‘ ‘ n
0.2 0.4 0.6 0.8
Figure : Binodal of 2D Lennard-Jones fluid a = 1/3,
T, =203~ T{™) =2 and n, = 0.971 (n{™*°” = 0.91) and the

simulations data (Smith& Frenkel).
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Mapping between binodals of the lattice gas and the fluid

Figure : Binodal of 3D L-J fluid (blue) obtained via mapping (with
a = 1/2) of the binodal of 3D Ising model (numerical data). Red line
is the Guggenheim cubic law.
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Scaling nature of 7

Different liquids differs by T. and n. because of different scales
for energy interaction and the molecular sizes. The lattice gas
hamiltonian obeys the scaling symmetry:

tcﬁ)\gtc, X = A M x,
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Different liquids differs by T. and n. because of different scales
for energy interaction and the molecular sizes. The lattice gas
hamiltonian obeys the scaling symmetry:

te = M te, xe = AN xe

1 a
— T/ T. =
2(1+a)’ o/ l1+a

din(f)

ne/n, =
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Consistency condition

The attractive part of the potential in d dimensions has the
form @,y (r) ~ r—(d+e) ¢ > (0. The energy of interaction is:

\%
Bin. = Z%r - n) =y [ Gunlriz) () nea) dr

naive scaling:
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Consistency condition

The attractive part of the potential in d dimensions has the
form P,y (1) ~ r~(d+e) ¢ > (0. The energy of interaction is:

\4
B = Zcbam on) =y [ Gunlriz) () nfea) dr

1 1
nCN@7 TCN(D(I‘C)NW

naive scaling:

ne — nc(0)e™,  Te— Te(0)ell+e/DA
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Consistency condition

naive scaling:

Te
1 dm(ﬁ) e 1

AR ey L e

@ dm () d L+3
Ny

d.

G

For LJ-systems with ®,;, oc r~% in d dimensions z =

d=2:a=1/3, d=3:a=1/2|
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CP in d-dimensions

T. 1 ne 145§
TERS n T 2Erg)
4d 4d
T*: :2d—1 _2d—1
6_d7 AydW G—d’ )

hard core volume is normalized so that n, = 1.
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Comparison with the simulations

LJ %6-12° fluid | 2D 3D D | 5D
T, 05 | 133 | 32 | 01
p{m) 0.515 | 1.312 | 3.404 | 8.8 (7)
N 0.375 | 0.33 | 0.3 | 027
p{mm) 0.355 | 0.316 | 0.34 ]
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Binodal as function of z

0.2 0.4 0.6 0.8 1.0

a — oo Flory 6-point?
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“particle-hole symmetr
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Connection between lattice and fluid

Proposition
Projective form of the lattice-fluid transformation is the

consequence of the projective nature of the thermodynamic
limit:
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Connection between lattice and fluid

Proposition
Projective form of the lattice-fluid transformation is the
consequence of the projective nature of the thermodynamic

limit:
U U
S ~ | & :
FLUID v|= L "N Ising Model
N N
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Relation between bulk thermodynamic potentials

X 0J

_x .9 _9¢%
l+at’ — Op N

5 X
. oh

we get relation between grand potentials:

n/n, =

t
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Relation between bulk thermodynamic potentials

X _9J

_x -9 _9¢%
l+at’ — Op N

s X
. oh

we get relation between grand potentials:

n/n, =

t

J(:U” T,V) = P(MvT)7V = ®(h(N7T)vt(T)7N)
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Relation between bulk thermodynamic potentials

_ox 0l
Cl4at’ T O

n/n X 0%
: _ oh

we get relation between grand potentials:

J(u, T,V) =P(u, T)V = & (h,t,N') = N g(h, t)

_h
 1+at

to(T) - chem. potential along coexistence curve

= po(T)

Kulinskii V. L. Global isomorphism



Surface tension

Relation between surface thermodynamic potentials (7)

The surface tension of 2D Ising model is determined by the next
eigenvalue of the transfer matrix Ay < Apax:

T = A + AT+
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Relation between surface thermodynamic potentials (7)

The surface tension of 2D Ising model is determined by the next
eigenvalue of the transfer matrix Ay < Apax:

T = A + AT+

VTInZy(u, T)=VP+0cA=Ng+sA=NtlnTy(h,t)
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Surface tension of 2D Ising model

s(t):2+tln<tanh 1) A=ttt ..

Surface ¢
eher
20 s,

0.5

0.2 04 0.6 0.8 1.0
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Surface tension of 2D LJ fluid

20 == - 2Ce o

=~

——— 2D Ising model (Onsager)

0.5
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Surface tension of 2D LJ fluid

T"=05
T," =0.533
0.4

= simulation (X.C.Zeng, JCP (1996))

0.2} === theory

T/T,
0.2 0.4 0.6
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Surface tension of 2D LJ fluid

g simulation (X.C.Zeng, JCP (1996))

theory

h
T"=0.5
0.1 ]
T, =0.533
0.80 0.85 0.90 0.95 1.00
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Surface tension of lattice mc

THYE JOURNAL OF CHEMICAL PHYSICS VOLUME 51, NUMBER 3 1 AUGUST 1969

General Equation for the Surface Tension of the Lattice Gas

Georce W. WoopBury, JR.*
Department of Chemistry, Undversity of Montana, Missoula, Montane 59801
(Received 30 December 1968)

A general expression for the surface tension of a lattice gas is derived. The equation is vA/kT'= (1 )e—
{n ), where v is the surface tension, 4 is the surface arca, » is related to the eigenvector corresponding
to the gas phase, and { )¢ and { )}, are averages performed in the bulk gas and bulk liquid phase, re-
spectively. The derivation, which incorporates rigorously defined local thermodynamic functions, is similar
in some ways to the Cahn-Hilliard development. Numerical results are obtained by applying the Bragg—
Williams approximation to the general equation,
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Surface tension of lattice model

THE JOURNAL OF CHEMICAL PHYSICS VOLUME 51, NUMBER 3 1 AUGUST 1969

General Equation for the Surface Tension of the Lattice Gas

Georce W. Woopsury, Jr.*
Department of Chemistry, Undversity of Mentana, Missoula, Montane 59801
(Received 30 December 1968)

A general expression for the surface tension of a lattice gas is derived. The equation is v4/kT= {y)e—
{n )1, where v is the surface tension, 4 is the surface area, 7 is related to the eigenvector corresponding
to the gas phase, and { )gand ( )} are averages performed in the bulk gas and bulk liquid phase, re-
spectively. The derivation, which incorporates rigorously defined local thermodynamic functions, is similar
in some ways to the Cahn-Hilliard development. Numerical results are obtained by applying the Bragg-
Williams approximation to the general equation.
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Local representation of the surface tension

o=t ((M)gas = (M)

Bragg-Williams approximation n = £ > p(s;):

i
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Local representation of the surface tension

o=t ({n)ges — (Mg )

Bragg-Williams approximation n = % > p(si):

g

t Xl
q
= (Xliq — Xgas ) In
2a Xgas

a - lattice spacing
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Local representation of the surface tension

o = (<77>gas_ <77>1iq>

Modified form:

t XJj
(Xliqg — Xgas ) In M

0=——
251_77 Xgas
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Local representation of the surface tension

o = (<77>gas_ <77>1iq>

Modified form:

2
o t Xlig - (Xliq - Xgas)

= ggr (Mia = Xgas) In o7 el
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Surface tension of lattice model

Local representation of the surface tension

v = (<77>gas_ <77>1iq>

Modified form:

2
t . . —_
(Xliqg — Xgas ) In g (Xtiq — Xgas )

o= —
2 61—77 Xgas 51_77

&(t) - effective thickness of the interface
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Test: 2D Ising model

1.2, —

Ent
1.0]
0.8
0.6

0.4

0.2

T/Tc

0.0 0.2 0.4 0.6 0.8 10

Figure : Effective interfacial thickness, n =1/4, v = 1.
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Surface tension of 3D fluid

t th
0= —— (Xljg — X In
2 51*77 ( ligq gas ) Xgas
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Surface tension of 3D fluid

t Xliq (Xliq — Xgas )
0= —— (X — X In
251777 ( ligq gas) Xgas ~ 5177]
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Surface tension of 3D fluid

S (Xliq — Xgas ) In Xliq N(X“q_xgas)2
2 glin fia 8 Xgas 5177]

g

&= (1/t—1)7%, n = 0.03 - Fisher’s critical exponent, v taken as
fitting parameter
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Surface tension of 3D fluid

1 Pliq,gas te T/Tc
XJ T) = : , t(T) =
ia.gos (1) 2(1+a) 1 - £+ % (™) l+al—4 %
| lvun:rn'nr OF CORRESPONDING STATES .
r w37 Ty T/ Ty
LU - —_— _(1__)_{__(1,,‘)
- Pe 4 Tc -4 Tr
oJ_I 1
T
o f

B

2 =
=
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Surface tension of 3D fluid

2o Surface tension of Argon and LJ fluid
0 T s Theory &= (1/t-1) v=0.628
1.
¢ ° [ ] Argon (NIST)
e ¥
o ¢ o Eh LJ (simulation)

Global isomorphism
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Surface tension of 3D fluid

06 07 0R 09

Figure : Temperature dependence of the effective interfacial thickness
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Surface tension of 3D fluid

Microscopic form (Kirkwood-Buff):

1
Ooo = § /dzl/df’ru'(r) (1 —3cos20)n2(Z1,Z2’r),
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Surface tension of 3D fluid

Microscopic form (Kirkwood-Buff):

1
Ooo = § /dzl/df’ru'(r) (1 —3cos29)n2(Z1,Z2’r),

Fluctuational (mesoscopic) form (Triezenberg-Zwanzig, 1972):

d
oo =T // dzq dzy ;l(Zl) Ko(z1,29) (o)

Al dZ2

1 [ .4
Ko(r1,72) = /dd 'p p? Co(71,72;p)

Kulinskii V. L. Global isomorphism
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Surface tension of 3D fluid

1
T

0
<8E>T =1-—n /Cz(n;rlg)drlg,

(8p> x|r[" T —T..
on )¢
1

2—a+y
‘ x £d+27n

Ca(n;r12) o< |7
d+1 1

_ d-1 2 .
KQ— /d P p CQ(Zl,ZQ,p)KWOCﬁ.

EN
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Surface tension of 3D fluid

Fluctuational (mesoscopic) form (Triezenberg-Zwanzig, 1972):

7o =T [ o B k01, 70) T oy
71

dZ2

1
Ko(z1,22) = /dp p* Co (71,29 p)
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Surface tension of 3D fluid

Fluctuational (mesoscopic) form (Triezenberg-Zwanzig, 1972):

7o =T [ o B k01, 70) T oy
71

dZ2

1
Ko(z1,22) = /dp p* Co (71,29 p)

dv=2-a, 2—a=8+7v, y=v(2-1)

Kulinskii V. L. Global isomorphism
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Surface tension of 3D fluid

Fluctuational (mesoscopic) form (Triezenberg-Zwanzig, 1972):

7o =T [ o B k01, 70) T oy
71

dZ2

1
Ko(z1,22) = /dp p* Co (71,29 p)
dv=2—-a, 2-a=p+vy, y=v(2-7), o]’

(g — Dgas)”
Oco ™ {1—_,7

Kulinskii V. L. Global isomorphism
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Surface tension of 3D fluid

Fluctuational (mesoscopic) form (Triezenberg-Zwanzig, 1972):

O — T // dZ1 dZQ C?ZI)KQ(Zl,Zg) M X ‘T’(d_l)u
7]

dZ2

1 1
Ka(z1,22) = /dp p° Co (21, 22:p) < 7—

dv=2-a, 2—a=B+vy, v=v(2-7n)), Jo<|7'|(d_1)”

(g — Dgas)’ - d—
g o A0 ) ppprsstion e
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Ap:2000<15T+...):>U:UOO<126T+ >

Microscopic form d1 (Bokhuis&Bedeaux, 1992)

or = 8o dzl/drlgu (1— 3 cos? 0) (z1+22) na(z1,2z2,1) .
Oco
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Question

Does the fluctuational (mesoscopic) form similar to
Trietzenberg-Zwanzig for oo exist for o7
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Square-gradient approx (Fisher& is, PRB (1984))

[ zn'(z)dz +fooz n'?(z) dz

J n'(z)dz _+foo n’2(z) dz

n(z) is the equilibrium density profile.
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Square-gradient approx (Fisher&Wortis, PRB (1984))

+00 400

[ z0'(z)dz [ zn?(z)dz
br =T ~
J n'(z)dz | n?(z)dz

—00

n(z) is the equilibrium density profile.

Anisimov’s expression, PRL (2007)

N)jq — Ngas
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Tolman length
Square-gradient approx (Fisher& Wortis, PRB (1984))

—+o00 +oo
f z1'(z) dz f zn’2(z) dz

6T: +o0 T 4o
J n/(z)dz [ n?(z)dz

—00

n(z) is the equilibrium density profile.

Anisimov’s expression, PRL (2007)

N)jq — Ngas

If there is “particle-hole* symmetry (Ising model) then o1 = 0.
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TZ-like form for the Tolman length

We start with B&B expression:

1
o = —— [ dzy / drys (z1422) v/ (r)r (1-3 cos’ 0) na(z1,22,1)

8 0o
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TZ-like form for the Tolman length

proceed with:

1 .
(ST = —87 dZ1 /dflz (2Z1 + zlg)u'(r)r (]. - 3COSZ 9) Ilg(Zl,ZQ,I‘) =
O
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TZ-like form for the Tolman length

proceed with:

1 .
(ST = —87 dZ1 /dflz (2Z1 + zlg)u'(r)r (]. - 3COSZ 9) Ilg(Zl,ZQ,I‘) =
O

1
ia— dZ1 dZ2 VAl n’(zl)K2(1,2) Il/(ZQ)

405
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TZ-like form for the Tolman length

proceed with:

1 .
(ST = - dZ1 /dflz (2Z1 +212)u'(r)r(1 - 3COSZ 9) Ilg(Zl,ZQ,I‘) =
80
]‘ ! !
ia— dZ1 dzzzln(zl)K2(1,2)n(zz)
405

1 " . ou Jdu S oS

7@ . (].Z(II'Z <X8X Zaz> o <R,R+I>
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Square Gradient approximation = local approximation for
Ks(1,2), so the first term goes to:

+oo
f zn'?(z) dz
_foo n'?(z) dz

/dZ1 dZQZln(Zl)Kz(l 2) (Zz)i

400C

Kulinskii V. L. Global isomorphism



Surface tension

Square Gradient approximation = local approximation for
Ks(1,2), so the first term goes to:

+oo
f zn'?(z) dz
_foo n'?(z) dz

/dZ1 dZQZln(Zl)Kz(l 2) (Zz)i

400C

the second:

Kulinskii V. L. Global isomorphism



Spinodal of the fluid

Spinodal
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a) p/gcln'f3

Figure : Binodal and spinodal for LJ fluid (Imre et al., JCP (2008))
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Spinodal

Corollary of the Global Isomorphism

The law of rectilinear diameter holds also for the spinodal

Global isomorphism
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Conclusions and future routes

@ There is the 1-1 correspondence between equilibrium states
of simple LJ-fluid and those of lattice gas (Ising model);

e not only bulk properties but also the surface tension can be
build up via mapping the corresponding lattice gas
characteristics

o Nonzeroth Tolman length is effect of the asymmetry
between liquid and gas in terms of the density

@ Spinodal must have the rectilinear diameter

o nucleation theory lattice models = fluids

o [s it possible to connect the transport coefficients of the
fluid and the lattice gas?
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The END

Thank you for attention!
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