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1. Intorduction

Statistical physics has proven to be a fruitful frame-
work to describe phenomena outside the realm of traditional
physics. Recent years have witnessed an attempt by physi-
cists to study collective phenomena emerging from the in-
teractions of individualsas elementary units in social struc-
tures.( Castellano C. at al., Statistical physics of social dy-
namics, Rev. Mod. Phys., 2009, 81, p. 591).

The Vicsek model (VM) is a simple yet productive way
to describe the behavior of the system of self-propelled par-
ticles which interact via exchange of information. It gave an
intense impact for the research in this new field of physics. In
this model each particle tends to move in the way its neigh-
bors do. Ordered motion emerges in such system at high
enough densities. Some stochastic perturbation (noise) may
be added to the system and this can lead to order-disorder
transition. We show that type of phase transition in the
Vicsek model (VM) for self-propelled particles depends on
the type of noise introduced to the system. Such models
should represent nontrivial hydrodynamics because of non-
holonomic character of the microscopic dynamics. We use
the microscopic phase density functional (MPDF) approach
to derive the equation for the distribution function. The nu-
merical experiment on the modelling of Couette flow reveals
no velocity profile which signifies the viscose-free hydrody-
namics of such system. In contrast to the molecular systems
the regular approach from the nonequilibrium statistical me-
chanics is an open problem for such kind of systems.

2. The basic models

The dynamical equation in continuous time limit for the
Vicsek model has been considered earlier. It has simple
form:

d

dt
vi = ωvi × vi , (1)

where ωvi is the “angular velocity“ of i-th particle. This an-
gular velocity depends on the velocities of neighboring par-
ticles. The self-propelling force and the frictional force are
assumed to balance each other.

It should be noted that the same situation is well known
for another model of synchronization - the Kuramoto (KM)
model determined by the following dynamical equations for
the oscillator phases:

θ̇i = ωi + k
∑
〈 i,j 〉

sin ( θj − θi ) = ωi + k Ni ui sin (ψi − θi ) , (2)

where k - is the interaction strength, ψi is the average local
phase of the nearest oscillators.

Yet in the KM the type of the transition depends on the
distribution function g(ω) of the proper frequencies of the os-
cillators. We consider 2D case and use the following defini-
tion of the local order parameter:

ri e
i ψi =

1

Ni

∑
〈 i,j 〉

ei θj . (3)

The same definition is used for the KM (see Eq. 2). Indeed,
let the angle θi characterize the direction of the velocity of
i-th particle, then ωvi = θ̇i and the equation of motion takes
the form, as it was shown:

θ̇i = ψ̇i + A sin (ψi − θi ) . (4)

The main difference between (2) and (4) is the form of
the first term. In the KM it is determined once and forever by
the distribution function g(ω). In the VM thi term has collec-
tive contribution, so VM tends to synchronize more efficiently.
Thus we can state that these models are isomorphic at least
in the mean field approximation.

First let us consider the case of scalar noise which can
be modeled by inclusion of the common Langevin source
into the equation of motion with g(ω) = δ(ω):

dθi = −k r sin(θi) dt + dwi(t) . (5)

Here wi(t) is the Wiener process stands for the random in-
crement of the angle. In the mean-field approximation one

easily comes to the self-consistent equation for the station-
ary value of the order parameter:

r =
I1(

Kr
D )

I0(
Kr
D )

. (6)

In such case the nontrivial solution appears continuously
from the trivial one. As the second case we consider the
vectorial perturbation of the VM introduced by Gregoire and
Chaté. This perturbation corresponds to the stochastic devi-
ation of the direction of motion for i-th particle due to addition
of the random vector ξi with |ξi| = ξ Ni.

The self-consistent mean-field equation for the order pa-
rameter:

r =
1

2π

π∫
−π

(
r
ξ + cosα

)
dα√

1 + 2rξ cosα +
(
r
ξ

)2 (7)

remarkably coincides with that for the order parameter of
the Kuramoto-like model augmented with the phase pinning
studied by Strogatz et al. By the comparison of the results
we can state that ξ is equivalent to the pinning strength. In
such case of the vectorial noise we have subcritical bifur-
cation of the solution where there is the discontinuous jump
between ordered and disordered motion because of the ex-
istence of the metastable state. One can expect that if some
new parameter is added to the system, then tricritical be-
havior can appear. Note that the tricritical behavior is also
demonstrated by the Kuramoto model. The simplest variant
is the statistical mixing of the vector and the scalar noises.
The corresponding self-consistent equation is of the form:

r = η Fv(r) + (1− η)Fs(r) . (8)

Here the right hand side of (8) corresponds to the statistically
mixed probability density for the angle of direction:

fmix(θ, r) = ηfv(θ, r) + (1− η)fs(θ, r) (9)

where fs nd fv are distribution functions for scalar and vector
noises respectively and 0 ≤ η ≤ 1 denotes the parameter of
statistical mixing.

The analysis of Eq. (8) shows that the bifurcation of its
solutions with varying parameter η corresponds to the tricrit-
ical behavior and there is an area where two stable regimes
are possible. When additional parameter was added the pos-
sibility appeared for both behaviors, supercritical and sub-
critical, to exist at one time. Indeed for the case of “mixed“
noise there is a region of values K and η where two non-
trivial stable regimes exist simultaneously. The complete
phase diagram for the mixed noise is given by Fig. 1.

Figure 1: Phase diagram of the system with mixed noise

3. Kinetic equation

We start with the derivation of the equation of motion
for the MPDF. Though such derivation is standard task we
perform it here to stress the importance of the fact that the
interaction between particles is not of potential type. For a
system of N particles with the positions and the velocities
ri,vi correspondingly one can use the standard definition of
the microscopic phase density:

N (r,v, t) =
N∑
i=1

δ(r− ri(t)) δ(v − vi(t)) (10)

with the standard normalization condition:∫
N (x, t) dx = N . (11)

We use the notation x = (r,v) for the point in the phase
space. Since N is a functional we consider any proper func-
tion f (x, t) on the phase space so that:

〈 f 〉N =

∫
f (x, t)N (x, t) dx = f ({xi(t)}, t) (12)

Taking into account the definition (10) it follows that:

∂N
∂t

+
∂(vN )

∂r
+
∂ (v̇N )

∂v
= 0 . (13)

This is exactly the conservation law due to Eq. (11). Note
that because the interaction between particle is general
is not potential and depends explicitly on their velocities
Eq. (13) differs from that for molecular systems. In the case
of the equation of motion (1) we get:

∂N (x, t)

∂t
+ v

∂N (x, t)

∂r
+

γ
∂

∂v

(
[[v,

∫
dx′N (x′, t)v′K(r− r′)],v],N (x, t)

)
= 0 (14)

From this equation one can come to the equation for one-
particle distribution function using the averaging procedure,
which uses that N (x, t) = nf1(x, t), where n ≡ N/L2. Lets
define the mean velocity of the neighbors w(r, t) as:

ρ(r, t)w(r, t) ≡ n

∫
K(r− r′)v′f1(x

′, t)dx′

Then the force field is

F(x, t) = γρ(r, t)[[v,w(r, t)],v] (15)

In the approach when one neglects the correlation we get:(
∂

∂t
+ v

∂

∂r
+ γρ(r, t)

∂

∂v
[[v,w(r, t)],v]

)
f1(x, t) = 0 (16)

Neglecting the spatial variation of the local velocity of the
neighbors w the standard form of the kinetic equation for the
one-particle distribution function f1 is obtained:

∂f1(x, t)

∂t
+ γnw

∂

∂θ
(sin(φ− θ)f1(x, t)) = 0 (17)

which is equivalent to the Langevin equation (5) without
noise.

We have also performed an experiment with a sys-
tem of self-propelled particles that were placed in bound-
ary conditions corresponding to the standard Couette prob-
lem. Left and right border were periodic, as it is used
usually in the simulations. Bottom border was just reflect-
ing, and top border was making particles go in one de-
fined direction (to the right). So, when the particle came
close enough to the border it was turned to follow the spec-
ified direction. Then we made an experiment as Couette’s
flow, to study the velocity profile and the viscosity proper-
ties of this “liquid”. The system has the following param-
eters: Number of particles N = 4000, size of the system
L = 30 strength of interaction gamma = 1, total number
of time steps of a simulation t = 10000, velocity v = 1,
size of time step dt = 0.1. The resulting velocity pro-
files for different noise strength values η are shown on
the Fig. 2. The results show trivial profile of the veloc-
ity. This means that the hydrodynamics is dissipative-free.
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Figure 1: Velocity profile

We have performed an experiment with a system of self-propelled particles
that were placed in special boundary conditions. Left and right border were
periodic, as it is used usually in the simulations. But, two other borders had
different properties. Bottom border was just reflecting, and top border was
making particles go in one defined direction (to the right). So, when the particle
came close enough to the border it was turned to follow the specified direction.
Then we made an experiment as Couette’s flow, to study the velocity profile
and the viscosity properties of this “liquid”. The system had next parameters:
Number of particles N = 4000, size of the system L = 30 strength of interaction
gamma = 1, total number of time steps of a simulation t = 10000, velocity
v = 1, size of time step dt = 0.1.

The resulting velocity profiles for different noise strength values η are shown
on the Fig. 1.
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Figure 2: The velocity profile of the “Coutte flow“ geometry
determined for different (scalar) noise intensities
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