A nonlinear coupling of chemical kinetics with mechanics

V. Klika ${ }^{1,2}$, M. Grmela ${ }^{3}$
${ }^{1}$ Institute of Thermomechanics of the AS CR, CR
klika@it.cas.cz
${ }^{2}$ Dept. of Mathematics, FNSPE, Czech Technical University in Prague, CR
${ }^{3}$ Chemical Engineering, Ecole Polytechnique, Montreal, Canada
23.8.12 Roros, IWNET 12

Outline

(1) Motivation
(2) A first approximation of coupling - CIT
(3) A non-linear mechano-chemical coupling-GENERIC
(4) A feedback to motivation?
(5) Conclusions

Bone and $B R$

Why are we interested?

- the importance of mechanics (coupling)
- two groups of models (lack of communication)
- bridging them with NET
Functions of BR in bone:to keep bone alive, to alter the shape of bone, repair damages in bone tissue, part of metabolism

Finding model formulation I

- For interaction schemes

$$
\sum_{j} \nu_{\alpha j} N_{j} \stackrel{k_{ \pm \alpha}}{\rightleftarrows} \sum_{j} \nu_{\alpha j}^{\prime} N_{j}, \quad \alpha=1, . ., s
$$

the Law of Mass Action is used (with some limitations)

$$
r_{\alpha}=k_{+\alpha} \prod_{j=1}^{n}\left[\mathrm{~N}_{\mathrm{j}}\right]^{\nu_{\alpha j}}-k_{-\alpha} \prod_{j=1}^{n}\left[\mathrm{~N}_{\mathrm{j}}\right]^{\nu_{\alpha j}^{\prime}}
$$

- Consequently, the change in concetration of subst. in time

$$
\left[\dot{\mathrm{N}}_{j}\right]=\sum_{\alpha}\left(\nu_{\alpha j}-\nu_{\alpha j}^{\prime}\right) r_{\alpha}
$$

where j refers to a substance N_{j}, r_{α} is the rate of α-th interaction, $\nu_{\alpha j}$ is stoichiometric coefficient for entering, outcomming substances N_{j} of interaction α, respectivelly

Finding model formulation of II

Phenomenological relations
Entropy production

$$
\sigma(S)=\mathbf{j}_{q} \nabla \frac{1}{T}-\sum_{i=1}^{n} \mathbf{j}_{\mathrm{D} i}\left(\nabla \frac{\mu_{i}}{T}-\frac{\mathbf{F}_{i}}{T}\right)+\frac{1}{T} \mathbf{t}_{\mathrm{dis}}: \nabla \mathbf{v}+\frac{1}{T} \sum_{\alpha=1}^{s} r_{\alpha} \mathcal{A}_{\alpha} \geq 0
$$

and its general form:

$$
\sigma(S)=J_{s} X_{s}+\mathbf{J}_{v} \cdot \mathbf{X}_{v}+\mathbf{J}_{a}^{a} \cdot \mathbf{X}_{a}^{a}+\mathbf{J}_{\mathbf{t}}: \mathbf{X}_{\mathbf{t}} .
$$

CIT for a scalar (rate of chemical reaction):

$$
J_{s}=L_{s s} X_{s}+\mathbf{L}_{s v} \cdot \mathbf{X}_{v}+\mathbf{L}_{s a}^{a} \cdot \mathbf{X}_{a}^{a}+\stackrel{\circ}{\mathbf{L}} \mathbf{s t (s)}_{\circ}^{\mathbf{X}_{\mathbf{t}(s)}}
$$

WLOG $\mathbf{L}_{\mathbf{s t}}$ is of the same kind as the thermodynamic force $\mathbf{X}_{\mathbf{t}}$ (thus,
$\mathbf{L}_{\mathbf{s t}}=\mathbf{L}_{\mathbf{s t}(s)}$ is a symmetric tensor with zero trace)

Rate of deformation tensor and entropy production

$$
\mathbf{D}^{i j}=\dot{\mathbf{E}}^{i j}=\frac{1}{2}\left(\frac{\partial \dot{\mathbf{u}}^{i}}{\partial x^{j}}+\frac{\partial \dot{\mathbf{u}}^{j}}{\partial x^{i}}\right)=\frac{1}{2}\left(\frac{\partial \mathbf{v}^{i}}{\partial x^{j}}+\frac{\partial \mathbf{v}^{j}}{\partial x^{i}}\right)=\frac{1}{2}\left((\nabla \mathbf{v})^{i j}+(\nabla \mathbf{v})^{j i}\right),
$$

and for the rate of volume variation $\mathbf{D}^{(1)}$ it holds:

$$
\mathbf{D}^{(1)}=\dot{\mathbf{E}}^{(1)}=\operatorname{div} \mathbf{v}=-\frac{1}{\rho} \frac{\mathrm{~d} \rho}{\mathrm{~d} t}
$$

note: tensor \mathbf{D} is the symmetric part of tensor $\boldsymbol{\nabla} \mathbf{v}$ and thus

$$
\begin{aligned}
& T \sigma(S)=\mathbf{t}_{\text {dis }}: \nabla \mathbf{v}+\sum_{\alpha=1}^{s} r_{\alpha} \mathcal{A}_{\alpha}= \\
= & \left(\sum_{\alpha=1}^{s} r_{\alpha} \mathcal{A}_{\alpha}+\frac{1}{3} \operatorname{tr}(\nabla \mathbf{v}) \operatorname{tr}\left(\mathbf{t}_{\text {dis }}\right)\right)+(\nabla \mathbf{v})_{(a)} \cdot\left(\mathbf{t}_{\text {dis }}\right)_{(a)}+\stackrel{\circ}{\mathbf{D}}:\left({\left.\stackrel{\circ}{\mathbf{t}_{\text {dis }}}\right)_{(s)} \geq 0,} .\right.
\end{aligned}
$$

where $\nabla \mathbf{v}$ was decomposed into scaled unit tensor and a symmetric and an antisymmetric parts with zero traces.

The isotropic system

To recall:

$$
J_{s}=L_{s s} X_{s}+\mathbf{L}_{s v} \cdot \mathbf{X}_{v}+\mathbf{L}_{s a}^{a} \cdot \mathbf{X}_{a}^{a}+\stackrel{\circ}{\mathbf{L}} \mathbf{s t (s)}_{\circ}^{\mathbf{X}_{\mathbf{t}(s)}}
$$

Constraints on phenomenological coefficients follow (from invariance of isotropic system under orthogonal transformations - does not modify the phenomenological tensors): inversion ($\mathbf{L}_{s v}=0$), arbitrary rotation $\left(\mathbf{L}_{s a}^{a}=0\right)$
Finally, from the fact that scalar quantity is not affected by orthogonal transf, namely $\mathbf{a}^{T} \mathbf{b}$ it follows

$$
\mathbf{L}_{\mathbf{s t}}=L_{s t} \mathbf{U}
$$

Moreover, $\operatorname{tr} \mathbf{L}_{\text {st }}=0 \quad \Rightarrow \quad \mathbf{L}_{\text {st }}=0$.
In total (Curie principle):

$$
J_{s}=L_{s s} X_{s}
$$

or in particular

$$
r_{\alpha}=L_{s_{1}} \mathcal{A}_{\alpha}+L_{s_{2}} \mathbf{D}^{(1)}
$$

Other choices of decomposition - scalar quantity $\mathbf{D}^{(2)}$

Analogous procedure; difference - tensors are not traceless Still constraints on phenomenological coefficients follow (from invariance of isotropic system under orthogonal transformations - does not modify the phenomenological tensors): inversion ($\mathbf{L}_{s v}=0$), arbitrary rotation $\left(\mathbf{L}_{s a}^{a}=0\right)$ but $\mathbf{L}_{\text {st }} \neq 0$, only

$$
\mathbf{L}_{\mathbf{s t}}=L_{s t} \mathbf{U},
$$

In total, CIT and Curie-Prigogine principle leads to (notice the dynamic origin; static I. when viscous effects are significant but still through strain rate)

$$
\begin{aligned}
r_{\alpha} & =L_{s_{1}} \mathcal{A}_{\alpha}+L_{s_{2}} \mathbf{D}^{(1)} \\
& =L_{s_{1}} \mathcal{A}_{\alpha}+L_{s_{2}} \mathbf{D}^{(2)}+L_{s_{3}} \mathbf{D}^{(1)}
\end{aligned}
$$

Finding model formulation III

Modified Law of Mass Action
The most important (least worst option) invariant is $\mathbf{D}^{(1)}$ and thus

$$
\Longrightarrow r_{\alpha}=I_{\alpha \alpha} \mathcal{A}_{\alpha}+I_{\alpha v} \mathbf{D}^{(1)}
$$

Expressions of affinity and chemical potential in CIT lead to
(1) The Law of Mass Action (when coupling neglected)

$$
r_{\alpha}=I_{\alpha \alpha} \mathcal{A}_{\alpha}=k_{+\alpha} \prod_{j=1}^{n}\left[\mathrm{~N}_{\mathrm{j}}\right]^{\nu_{\alpha i}}-k_{-\alpha} \prod_{i=1}^{n}\left[\mathrm{~N}_{\mathrm{j}}\right]^{\nu_{\alpha i}^{\prime}}
$$

(2) The modified Law of Mass Action (including mechano-chemical coupling)

$$
r_{\alpha}=I_{\alpha \alpha} \mathcal{A}_{\alpha}+I_{\alpha v} \mathbf{D}^{(1)}=k_{+\alpha} \prod_{j=1}^{n}\left[\mathrm{~N}_{\mathrm{j}}\right]^{\nu_{\alpha i}}-k_{-\alpha} \prod_{i=1}^{n}\left[\mathrm{~N}_{\mathrm{j}}\right]^{\nu_{\alpha i}^{\prime}}+I_{\alpha v} \mathbf{D}^{(1)}
$$

$\left(C^{i j k l}=C^{i j k l}\left(N_{j}\right)=C^{i j k l}\left(N_{j}\left(\mathbf{D}^{(1)}\right)\right)\right)$

Prerequisities

- Isothermal - ϕ instead of S
- Mechanical scalar variables (coupling depends on parity): even-parity \mathbf{a}, and odd-parity \mathbf{b}
- Chemical variables: molar concentrations \mathbf{n} and their fluxes \mathbf{z}
- Conjugates $\left(\mathbf{a}^{*}, \mathbf{b}^{*}\right),\left(\mathbf{n}^{*}, \mathbf{z}^{*}\right), \mathbf{a}^{*}=\partial_{a} \phi$

Uncoupled mechanics

The time evolution of simplified but complete mechanics relevant for coupling (GENERIC):

$$
\begin{aligned}
\binom{\dot{\mathbf{a}}}{\dot{\mathbf{b}}}= & \left(\begin{array}{cc}
0 & \boldsymbol{\kappa} \\
-\boldsymbol{\kappa}^{T} & 0
\end{array}\right)\binom{\mathbf{a}^{*}}{\mathbf{b}^{*}}-\binom{0}{\Theta_{\mathbf{b}^{*}}^{\text {mech }}} \\
& =\binom{\boldsymbol{\kappa} \mathbf{b}^{*}}{-\boldsymbol{\kappa}^{T} \mathbf{a}^{*}}-\binom{0}{\Theta_{\mathbf{b}^{*}}^{\text {mech }}} .
\end{aligned}
$$

The dissipation potential $\Theta^{\text {mech }}\left(\mathbf{a}, \mathbf{b}^{*}\right)$ satisfies:
$\Theta^{\text {mech }}$ is a real valued and sufficiently regular function of ($\mathbf{a}, \mathbf{b}, \mathbf{b}^{*}$)
$\Theta^{\text {mech }}(\mathbf{a}, \mathbf{b}, 0)=0$
$\Theta^{\text {mech }}\left(\mathbf{a}, \mathbf{b}, \mathbf{b}^{*}\right)$ reaches its minimum at $\mathbf{b}^{*}=0$
$\Theta^{\text {mech }}\left(\mathbf{a}, \mathbf{b}, \mathbf{b}^{*}\right)$ is a convex function of \mathbf{b}^{*} in a neighbourhood of $\mathbf{b}^{*}=0$.
$\Theta^{\text {mech }}$ is usually considered quadratic.

Notes on structure of the evolution eq

$$
\begin{aligned}
\binom{\dot{\mathbf{a}}}{\dot{\mathbf{b}}}= & \left(\begin{array}{cc}
0 & \boldsymbol{\kappa} \\
-\boldsymbol{\kappa}^{T} & 0
\end{array}\right)\binom{\mathbf{a}^{*}}{\mathbf{b}^{*}}-\binom{0}{\Theta_{\mathbf{b}^{\text {mech }}}} \\
& =\binom{\boldsymbol{\kappa} \mathbf{b}^{*}}{-\boldsymbol{\kappa}^{T} \mathbf{a}^{*}}-\binom{0}{\Theta_{\mathbf{b}^{*}}^{\text {mech }}},
\end{aligned}
$$

The first term: time reversibility (invariance under $t \rightarrow-t$ and change of parity).
The second term: in mechanics, dissipation is typically a friction \propto lin momenta $\mathbf{b} \Rightarrow$ dissipation term has odd-parity; \Rightarrow dissipation term is expected to be only in the evolution of linear momentum \mathbf{b}; We let only the odd-parity variables dissipate Note that $\frac{d \Phi}{d t} \leq 0$ (consistency with thermodynamics).

Uncoupled chemisty, LoMA

LoMA (Guldberg-Waage) in GENERIC form (yesterday):

$$
\dot{\mathbf{n}}=-\Xi_{\mathbf{n}^{*}}^{c h e m}
$$

with dissipation potential

$$
\Xi^{\text {chem }}(\mathbf{n}, \mathbf{X})=\sum_{\rho=1}^{s} W_{\rho}(\mathbf{n})\left(e^{-\frac{1}{2} X_{\rho}}+e^{\frac{1}{2} X_{\rho}}-2\right)
$$

where thermodynamic forces $\mathbf{X}=\left(X_{1}, \ldots, X_{s}\right)^{T}$ are

$$
X_{\rho}=\sum_{k=1}^{K} \gamma_{\rho}^{k} \Phi_{n_{k}}^{\text {chem }}
$$

together with the natural choice of entropy form $S(\mathbf{n})=-\sum_{j=1}^{K}\left(n_{j} \ln n_{j}+Q_{j} n_{j}\right)$ where Q_{1}, \ldots, Q_{K} can be calculated.
Note that $\mathbf{n}^{*}=\boldsymbol{\mu}$.

Uncoupled chemisty, Extended

Fluxes (odd-parity momentum-like quantity) considered as independent variables (motivated by EIT; yesterday)
From the analogy with mechanics

$$
\begin{aligned}
\binom{\dot{\mathbf{n}}}{\dot{\mathbf{z}}}= & \left(\begin{array}{cc}
0 & \gamma \\
-\gamma^{\top} & 0
\end{array}\right)\binom{\mathbf{n}^{*}}{\mathbf{z}^{*}}-\binom{0}{\Theta_{\mathbf{z}^{*}}^{\text {chem }}} \\
& =\binom{\gamma \mathbf{z}^{*}}{-\gamma^{T} \mathbf{n}^{*}}-\binom{0}{\Theta_{\mathbf{z}^{*}}^{\text {chem }},}
\end{aligned}
$$

Note that the reversible part of the right-hand-side of \dot{z} is equal to affinity. The standard LoMA formulation in GENERIC is required when fluxes equilibrate (separation of timescales) \rightarrow disip pot $\Theta^{c h e m}$. Now \mathbf{n} acquire dissipation.

Coupled chemical kinetics and mechanics

$$
\begin{aligned}
& \left(\begin{array}{c}
\dot{\mathbf{n}} \\
\dot{\mathbf{a}} \\
\dot{\mathbf{z}} \\
\dot{\mathbf{b}}
\end{array}\right)=\left(\begin{array}{cccc}
0 & 0 & \gamma & \boldsymbol{\mu} \\
0 & 0 & \boldsymbol{\nu} & \boldsymbol{\kappa} \\
-\boldsymbol{\gamma}^{T} & -\boldsymbol{\nu}^{T} & 0 & 0 \\
-\boldsymbol{\mu}^{T} & -\boldsymbol{\kappa}^{T} & 0 & 0
\end{array}\right)\left(\begin{array}{c}
\mathbf{n}^{*} \\
\mathbf{a}^{*} \\
\mathbf{z}^{*} \\
\mathbf{b}^{*}
\end{array}\right)-\left(\begin{array}{c}
0 \\
0 \\
\Theta_{z^{*}}^{(1, n, a, z, b)} \\
\Theta_{\mathbf{b}^{*}}^{(2, n, a, z, b)}
\end{array}\right) \\
& =\left(\begin{array}{c}
\boldsymbol{\gamma} \mathbf{z}^{*}+\boldsymbol{\mu} \mathbf{b}^{*} \\
\boldsymbol{\kappa} \mathbf{b}^{*}+\boldsymbol{\nu} \mathbf{z}^{*} \\
-\boldsymbol{\gamma}^{T} \mathbf{n}^{*}-\boldsymbol{\nu}^{T} \mathbf{a}^{*}-\Theta_{\left.\mathbf{z}^{*}, n, \mathbf{a}, \boldsymbol{z}, b\right)}^{(1)} \\
-\boldsymbol{\kappa}^{T} \mathbf{a}^{*}-\boldsymbol{\mu}^{T} \mathbf{n}^{*}-\Theta_{\left.\mathbf{b}^{*}, n, a, b\right)}^{(2)}
\end{array}\right)
\end{aligned}
$$

Again dissipation is assumed only in evolution of odd-parity variables and reversible evolution of a state variable is caused by conjugate state variables with different parity

Coupling, separation of scales

Relaxation times of reaction fluxes \ll relaxation times of concentrations, i.e. $\dot{\mathbf{z}}=0$ with solution $\mathbf{z}^{*}=\mathbf{Z}^{*}(\mathbf{n}, \mathbf{a}, \mathbf{b})$ (we aim for modified LoMA).

The time evolution equations become now

$$
\left(\begin{array}{c}
\dot{\mathbf{n}} \\
\dot{\mathbf{a}} \\
\dot{\mathbf{b}}
\end{array}\right)=\left(\begin{array}{c}
\gamma \mathbf{Z}^{*}+\boldsymbol{\mu} \mathbf{b}^{*} \\
\boldsymbol{\kappa} \mathbf{b}^{*}+\boldsymbol{\nu} \mathbf{Z}^{*} \\
-\boldsymbol{\kappa}^{T} \mathbf{a}^{*}-\boldsymbol{\mu}^{T} \mathbf{n}^{*}-\Theta_{\mathbf{b}^{*}}^{(2, n, a, Z, b)}
\end{array}\right) .
$$

Note the linear dependence of $\dot{\mathbf{n}}$ on odd-parity conjugate variables \mathbf{b}^{*} (CIT, Casimir-Onsager).

Further insight, a particular example I

State variables $(\mathbf{n}, \mathbf{a}, \mathbf{b})$ and entropy of the form $S(\mathbf{n}, \mathbf{a}, \mathbf{b})=-\sum n_{j} \ln n_{j}+Q_{j} n_{j}+S(\mathbf{a}, \mathbf{b})$.
Assumung separation of dissipation potential

$$
\Xi\left(\mathbf{n}, \mathbf{a}, \mathbf{b}, \mathbf{n}^{*}, \mathbf{a}^{*}, \mathbf{b}^{*}\right)=\Xi^{1}\left(\mathbf{n}, \mathbf{a}, \mathbf{b}, \mathbf{n}^{*}\right)+\Xi^{2}\left(\mathbf{n}, \mathbf{a}, \mathbf{b}, \mathbf{a}^{*}, \mathbf{b}^{*}\right) .
$$

Then the evolution is:

$$
\left(\begin{array}{c}
\dot{\mathbf{n}} \\
\dot{\mathbf{a}} \\
\dot{\mathbf{b}}
\end{array}\right)=\left(\begin{array}{c}
\gamma \mathbf{Z}^{*}+\boldsymbol{\mu} \mathbf{b}^{*} \\
\boldsymbol{\kappa} \mathbf{b}^{*}+\boldsymbol{\nu} \mathbf{Z}^{*} \\
-\boldsymbol{\kappa}^{T} \mathbf{a}^{*}-\boldsymbol{\mu}^{T} \mathbf{n}^{*}-\Xi_{\mathbf{b}^{*}}^{2}
\end{array}\right),
$$

where $\mathbf{z}^{*}=\mathbf{Z}^{*}\left(\mathbf{n}, \mathbf{a}, \mathbf{b}, \mathbf{n}^{*}, \mathbf{a}^{*}\right)$ is the solution of zero flux equation $\gamma^{\top} \mathbf{n}^{*}+\boldsymbol{\nu}^{\top} \mathbf{a}^{*}+\Xi_{\mathbf{z}^{*}}=0$ (quasi-steady assumption).

Further insight, a particular example II

Now, as $\Xi_{\mathbf{z}^{*}}=\Xi_{\mathbf{z}^{*}}^{1}\left(\mathbf{z}^{*}\right)$ we identify $\Xi^{1}\left(\mathbf{z}^{*}\right)$ with the dissipation potential for uncoupled chemical kinetics $\Theta^{\text {chem }}\left(\mathbf{z}^{*}\right)$.
Then

$$
\begin{aligned}
\Xi_{z_{\rho}^{*}}^{1} & =\Theta_{z_{\rho}^{*}}^{c h e m}=-2 \ln \left(-\frac{z_{\rho}^{*}}{W_{\rho}}+\sqrt{\left(\frac{z_{\rho}^{*}}{W_{\rho}}\right)^{2}+1}\right)=-\underbrace{\left(\gamma^{T} \mathbf{n}^{*}+\boldsymbol{\nu}^{T} \mathbf{a}^{*}\right)_{\rho}}_{x_{\rho}} \\
& \therefore \mathbf{Z}_{\rho}^{*}\left(\mathbf{n}^{*}, \mathbf{a}^{*}\right)=-\frac{1}{2} W_{\rho}\left(e^{1 / 2 X_{\rho}}-e^{1 / 2 x_{\rho}}\right) \\
& \therefore-\left(\gamma \mathbf{Z}^{*}\left(\mathbf{n}^{*}, \mathbf{a}^{*}\right)\right)_{k}=-\sum_{\rho} \gamma_{\rho}^{k} \mathbf{Z}_{\rho}^{*}\left(\mathbf{n}^{*}, \mathbf{a}^{*}\right)
\end{aligned}
$$

which is exactly the chemical dissipation potential $\Theta_{\mathbf{n}^{*}}^{c h e m}$ yielding the law of mass action within GENERIC but where "extended affinities"

$$
X_{\rho}=\left(\gamma^{T} \mathbf{n}^{*}+\nu^{T} \mathbf{a}^{*}\right)_{\rho}
$$

have been introduced.
Note that X_{ρ} is independent of \mathbf{b}^{*}. LoMA is recovered without coupling, $\boldsymbol{\nu}=0, \boldsymbol{\mu}=0$.

Further insight, a particular example III

The evolution equations may now be rewritten into the following form

$$
\left(\begin{array}{c}
\dot{\mathbf{n}} \\
\dot{\mathbf{a}} \\
\dot{\mathbf{b}}
\end{array}\right)=\left(\begin{array}{ccc}
0 & 0 & \boldsymbol{\mu} \\
0 & 0 & \kappa \\
-\boldsymbol{\mu}^{T} & -\kappa^{T} & 0
\end{array}\right)\left(\begin{array}{c}
\mathbf{n}^{*} \\
\mathbf{a}^{*} \\
\mathbf{b}^{*}
\end{array}\right)-\left(\begin{array}{c}
\Xi_{\mathbf{n}^{*}}^{1} \\
\Xi_{\mathbf{a}^{*}}^{1} \\
\Xi_{\mathbf{b}^{*}}^{2}
\end{array}\right),
$$

where

$$
\Xi^{1}\left(\mathbf{n}, \mathbf{a}, \mathbf{b}, \mathbf{n}^{*}, \mathbf{a}^{*}\right)=\sum_{\rho=1}^{s} W_{\rho}(\mathbf{n})\left(e^{-\frac{1}{2} x_{\rho}}+e^{\frac{1}{2} x_{\rho}}-2\right)
$$

with $X_{\rho}=\sum_{j} \gamma_{\rho}^{j} n_{j}^{*}+\sum_{i} \nu_{\rho}^{i} a_{i}^{*}$ and $\Xi^{2}\left(\mathbf{n}, \mathbf{a}, \mathbf{b}, \mathbf{a}^{*}, \mathbf{b}^{*}\right)$ being some relevant dissipation functional for description of the considered mechanical process (standard potential would be quadratic).

Further insight, a particular example IV

Modified LoMA
The very same calculations that lead to obtaining the law of mass action within GENERIC may be applied here yielding

$$
\begin{aligned}
\dot{n}_{i}= & \sum_{\rho} \underbrace{\left\{\vec{k}_{\rho} \exp \left(-\frac{1}{2} \sum_{j} \nu_{\rho}^{j} a_{\rho}^{*}\right)\right\}}_{\stackrel{\vec{k}_{\rho}}{ }} \gamma_{\rho}^{i} \prod n_{l}^{\alpha_{\rho}^{\prime}}- \\
& -\sum_{\rho} \underbrace{\left\{\overleftarrow{k}_{\rho} \exp \left(\frac{1}{2} \sum_{j} \nu_{\rho}^{j} a_{j}^{*}\right)\right\}}_{\overleftarrow{k}_{\rho}} \gamma_{\rho}^{i} \prod n_{l}^{\beta_{\rho}^{\prime}}+\sum_{j} \mu_{j}^{i} b_{j}^{*}, \quad i=1, \ldots, K
\end{aligned}
$$

and for mechanics

$$
\begin{aligned}
& \dot{a}_{i}=\sum_{\rho} \vec{k}_{\rho} \nu_{\rho}^{i} \prod_{l} n_{l}^{\alpha_{\rho}^{l}}-\sum_{j} \overleftarrow{\widehat{k}}_{\rho} \nu_{\rho}^{i} \prod_{l} n_{l}^{\beta_{\rho}^{l}}+\sum_{j} \kappa_{j}^{i} b_{j}^{*}, \quad i=1, \ldots, m_{1} \\
& \dot{b}_{i}=-\sum_{j=1}^{K} \mu_{j}^{i} n_{j}^{*}-\sum_{k=1}^{m_{1}} \kappa_{k}^{i} a_{k}^{*}-\Xi_{b_{i}^{*}}^{2}\left(\mathbf{n}, \mathbf{a}, \mathbf{b}, \mathbf{a}^{*}, \mathbf{b}^{*}\right), \quad i=1, \ldots, m_{2}
\end{aligned}
$$

Customer of thermodynamics: Model of BR, algorithm

- Identification of crucial biochemical processes
- Modified LoMA
- Parameter setting
- FEM implementation

Femur in a healthy individual, simulation

Standard serum levels of considered biochemical factors corresponding to a healthy state/individual: estradiol $50 \frac{\mathrm{pg}}{\mathrm{ml}}$, PTH $34 \frac{\mathrm{pg}}{\mathrm{ml}}$, RANKL $46.2 \frac{\mathrm{pg}}{\mathrm{ml}}$, OPG $36 \frac{\mathrm{pg}}{\mathrm{ml}}$, and NO levels correspond to intake of $0.044 \frac{\mathrm{mg}}{\mathrm{kg}}$ of nitroglycerin per day. Number of loading cycles is $N=10,000$ also corresponding to healthy mechanical stimulus per day

Predictions and observations

Comparison of prediction of BMD changes from mechano-chemical (CIT) model to data found in literature.

$B M D_{\text {ind }}$	-10.4\%	-5.6\%	$<-1 \%$	+16.2\%
literature	-(7-15)\%	-5.7\%	$<-1 \%$	+14.1\%

Conclusions

- Can coupling analysis be carried out outside of linear regime (close to equilibrium) when majority of chemical processes are considered to be far from equilibrium? How?
- (partners) Multi-disciplinary appoach is needed for many problems -non-equilibrium thermodynamics can be used with success
- (partners\&customers) Bridging of this gap with non-equilibrium thermodynamics
- Experimental verification of mechano-chemical coupling

A nonlinear coupling of chemical kinetics with mechanics

V. Klika ${ }^{1,2}$, M. Grmela ${ }^{3}$
${ }^{1}$ Institute of Thermomechanics of the AS CR, CR
klika@it.cas.cz
${ }^{2}$ Dept. of Mathematics, FNSPE, Czech Technical University in Prague, CR
${ }^{3}$ Chemical Engineering, Ecole Polytechnique, Montreal, Canada

23.8.12 Roros, IWNET 12

