Steady-State Two-Phase Flow in Porous Media: Open Questions

IWNET 2012

Røros, August 21, 2012

Santanu Sinha Dick Bedeaux Signe Kjelstrup Alex Hansen

Institutt for fysikk and Institutt for kjemi, NTNU Trondheim, Norway

Knut Jørgen Måløy

Fysisk institutt University of Oslo

Ground to be Covered:

- 1. Steady-State Flow in the Laboratory
- 2. Steady-State Flow on the Computer
- 3. Nonlinear Rheology
- 4. Statistical Mechanics of Porous Media Flow

1. Steady-State Flow in the Laboratory

Steady-State Flow in the Laboratory

Both fluids move and fluid clusters break up and merge; still steady state.

A setup for studying steady-state flow in the laboratory:

Innovation and Creativity

Phys. Rev. E 80, 036308 (2009).

2. Steady-State Flow on the Computer

Numerical Model: Network of Connected Pores

Disorder is incorporated by assigning the radius (r) of the tubes randomly, $r \in (0.1\ell, 0.4\ell)$.

Flow in each tube obeys Washburn equation

 $q_{ij} = -\frac{\pi r^4}{8\ell\mu_{\text{eff}}} \left(p_j - p_i - \sum p_c \right)$

Tubes are hour-glass shaped with respect to the capillary pressure (p_c)

$$p_c = \frac{2\gamma}{r} \left(1 - \cos \frac{2\pi x}{\ell} \right)$$

Knudsen et al. Transp. Por. Med. 47, 99 (2002).

Innovation and Creativity

Hansen and Ramstad Comp. Geosci. 13, 227 (2009)

3 Dimensions: Reconstructed pore networks

Pore Network from Berea Sandstone

(3mm)³

Each pore is described by a number of geometric parameters.

Reconstruction by e.g. merging thin slices

Largest non-wetting clusters at different saturation

Single vs. Two-Phase Flow (in 2D)

Knudsen and Hansen, Europhys. J. B 49, 109 (2006)

varying Ca. The simulated points indicate the dynamical phase boundaries. In the lower left part of the diagrams, there is single-phase wetting flow; in the middle upper part, two-phase flow; and in the lower right part, single-phase nonwetting flow.

Innovation and Creativity

-1.0

-2.0

-3.0

-4.0

-5.0

log10(Ca)

3. Nonlinear Rheology

$$q = -\frac{\pi r_0^4}{8\mu_{av}l} \ (\Delta p - p_c(x_b))$$
Motion of bubble
$$\dot{x}_b = -\frac{r_0^2}{8l\mu_{av}} \left[\Delta p - \gamma \sin\left(\frac{2\pi x_b}{l}\right)\right]$$
This is the driven overdamped pendulum
$$\frac{d\theta}{d\tau} = \frac{|\Delta p|}{\gamma} + \sin\theta \ ,$$

FIG. 2. Mean pressure difference ΔP_L during steady state as a function of Ca. The fluctuations in ΔP_L are of the order of 1 kPa, i.e., very small compared to the mean values. A power law dependence is found, with exponent $\beta = 0.54 \pm 0.08$.

17

Experiment in radial 3D geometry

Rassi et al. New J. Phys. **13**, 015007 (2011).

Figure 5. Average steady-state pressure drop versus capillary number for each repetition I–IV. The straight lines show the power-law fits for each repetition: I, $\beta = 0.35$; II, $\beta = 0.3$; III, $\beta = 0.45$; and IV, $\beta = 0.3$.

Intuition: (Roux and Herrmann, Europhys. Lett. 4, 1227 (1987).)

•Change pressure over network by $\delta(\Delta P)$.

•Number of additional links begin to flow: $\delta N \sim \delta(\Delta P)$.

•Conductance of network change by $\delta \Sigma \sim \delta N \sim \delta (\Delta P)$.

•Integrate to find $Q \sim (\Delta P - \Delta P_c)^2$.

Bingham plastic

Effective medium theory

Generalized Darcy equation:

$$Q = -C \frac{A}{L} \frac{K(S_{nw})}{\mu_{\text{eff}}(S_{nw})} \operatorname{sgn}(\Delta P) \begin{cases} (|\Delta P| - \Delta P_c(S_{nw}))^2 & \text{if } |\Delta P| > \Delta P_c \\ 0 & \text{if } |\Delta P| \le \Delta P_c \end{cases},$$

Sinha and Hansen, Europhys. Lett., in press (2012).

$$\Delta P_{c} = \min_{\text{path}} \Sigma_{i \in \text{path}} \Delta p_{c i}$$

Reanalyzing the Rassi et al. data.

Figure 5. Average steady-state pressure drop versus capillary number for each repetition I–IV. The straight lines show the power-law fits for each repetition: I, $\beta = 0.35$; II, $\beta = 0.3$; III, $\beta = 0.45$; and IV, $\beta = 0.3$.

$$Q = -C \frac{A}{L} \frac{K(S_{nw})}{\mu_{eff}(S_{nw})} \operatorname{sgn} (\Delta P) \left\{ (|\Delta P| - \Delta P_c(S_{nw}))^2 \text{ if } |\Delta P| > \Delta P_c, \\ 0 \text{ if } |\Delta P| \le \Delta P_c, \end{array} \right\}$$
Single link
$$(A - \Delta P_c)^{1/2}$$
Network
$$(\Delta P - \Delta P_c)^{1/2}$$

$$Q \sim (\Delta P - \Delta P_c)^2$$

$$(A - \Delta P_c)^{1/2}$$

/

۱

4. Statistical Mechanics of Porous Media Flow

Returning to the concept of a state.

Sequence of configurations through time integration:

The order of the configurations has been randomized:

This randomization does not change the statistics.

If order plays no role: All steady-state properties will be completely described by the configurational probability distribution Π {cf} where {cf} signifies the positions of all interfaces between the immiscible fluids in the porous medium.

A configuration is fully described by the position of all interfaces.

This leads to a statistical mechanics for porous media.

Metropolis Monte Carlo Sampling

-	
	Configurational probability
Gave of all pomish configuration Charles Canto Canto Cime integration	Π{cf}
	Old configuration ⇒ Test configuration {cf _{old} } {cf _{test} }
	/ Chosen by random change of old configuration.
	Draw a random number $r \in [0,1]$.
	If $\Pi{cf_{old}}/\Pi{cf_{test}} > r$: Reject test configuration.
	If $\Pi{cf_{old}}/\Pi{cf_{test}} \le r$: Accept test configuration.

Innovation and Creativity

Hansen and Ramstad Comp. Geosci. 13, 227 (2009)

 $f(x_b)$ is some function of x_b .

36

- 1. Steady-State Flow in the Laboratory
- 2. Steady-State Flow on the Computer
- 3. Nonlinear Rheology
- 4. Statistical Mechanics of Porous Media Flow

