Steady-State Two-Phase Flow in Porous Media: Open Questions

IWNET 2012
Røros, August 21, 2012

Santanu Sinha Dick Bedeaux Signe Kjelstrup Alex Hansen
Institutt for fysikk and
Institutt for kjemi, NTNU Trondheim, Norway
Knut Jørgen Måløy

Fysisk institutt
University of Oslo

Ground to be Covered:

1. Steady-State Flow in the Laboratory
2. Steady-State Flow on the Computer
3. Nonlinear Rheology
4. Statistical Mechanics of Porous Media Flow

1. Steady-State Flow in the Laboratory

Steady-State Flow in the Laboratory

Both fluids move and fluid clusters break up and merge; still steady state.

A setup for studying steady-state flow in the laboratory:

Tallakstad et al., Phys. Rev. Lett. 102, 074502 (2009); Phys. Rev. E 80, 036308 (2009).
2. Steady-State Flow on the Computer

Numerical Model: Network of Connected Pores

Disorder is incorporated by assigning the radius (r) of the tubes randomly, $r \in(0.1 \ell, 0.4 \ell)$.

Flow in each tube obeys Washburn equation

$$
q_{i j}=-\frac{\pi \cdot \cdot^{4}}{8 \ell \mu_{e f f}}\left(p_{j}-p_{i}-\sum p_{c}\right)
$$

Tubes are hour-glass shaped with respect to the capillary pressure $\left(p_{c}\right)$

$$
p_{c}=\frac{2 \gamma}{r}(1-\cos 2 \pi x / \ell)
$$

Knudsen et al. Transp. Por. Med. 47, 99 (2002).

Steady-state Flow on a Torus

Hansen and Ramstad Comp. Geosci. 13, 227 (2009)

High-speed channels

Local flow rates

- NTNU

3 Dimensions: Reconstructed pore networks

Pore Network from Berea Sandstone

$(3 \mathrm{~mm})^{3}$

Each pore is described by a number of geometric parameters.

Reconstruction by e.g. merging thin slices

Evolution towards steady-state flow

Steady state

$$
\begin{aligned}
& C a=0.015, \\
& M=1, \\
& S=0.5
\end{aligned}
$$

non-wetting saturation

Largest non-wetting clusters at different saturation

$$
\mathrm{S}=0.65
$$ levels in steady state

Single vs. Two-Phase Flow (in 2D)

(a) $\mathrm{Ca}=1.00 \times 10^{-2}$

(d) $\mathrm{Ca}=1.00 \times 10^{-3}$

(b) $\mathrm{Ca}=5.62 \times 10^{-3}$

(e) $\mathrm{Ca}=5.62 \times 10^{-4}$

(c) $\mathrm{Ca}=3.16 \times 10^{-3}$

(f) $\mathrm{Ca}=3.16 \times 10^{-4}$

Fig. 3. The phase diagram for six selected values of Ca. The \times-marks are the transition points from the simulations. The uncertainty in each point is not marked, but it is substantial. The scattering of points in parameter space gives an indication of the uncertainty. Phase boundaries are indicated by solid lines, see Section 4. The phase diagrams are divided into three regions, counting from the left hand side: single-phase wetting flow, two-phase flow, and single-phase nonwetting flow.

(a) $M=10^{2.0}$

(b) $M=10^{0.0}$

(c) $M=10^{-2.0}$

Fig. 4. The phase diagram for three selected values of M. The simulations were performed at constant saturation, but with varying Ca . The simulated points indicate the dynamical phase boundaries. In the lower left part of the diagrams, there is single-phase wetting flow; in the middle upper part, two-phase flow; and in the lower right part, single-phase nonwetting flow.
3. Nonlinear Rheology

Flow through a single tube

Sinha et al. to be submitted this week (2012)

$$
q=-\frac{\pi r_{0}^{4}}{8 \mu_{a v} l}\left(\Delta p-p_{c}\left(x_{b}\right)\right)
$$

This is the driven overdamped pendulum

$$
\frac{d \theta}{d \tau}=\frac{|\Delta p|}{\gamma}+\sin \theta
$$

Effective response of single tube
Saddle-node bifurcation

Experimental study of Steady-State flow in Hele-Shaw Cell

Tallakstad et al. Phys. Rev. Lett. 102, 074502 (2009)

FIG. 2. Mean pressure difference ΔP_{L} during steady state as a function of Ca . The fluctuations in ΔP_{L} are of the order of 1 kPa , i.e., very small compared to the mean values. A power law dependence is found, with exponent $\beta=0.54 \pm 0.08$.

Experiment in radial 3D geometry

Rassi et al. New J. Phys. 13, 015007 (2011).

Figure 5. Average steady-state pressure drop versus capillary number for each repetition I-IV. The straight lines show the power-law fits for each repetition: I, $\beta=0.35$; II, $\beta=0.3$; III, $\beta=0.45$; and IV, $\beta=0.3$.

Behaves as a Bingham Plastic

Intuition: (Roux and Herrmann, Europhys. Lett. 4, 1227 (1987).)
-Change pressure over network by $\delta(\Delta \mathrm{P})$.

- Number of additional links begin to flow: $\delta \mathrm{N} \sim \delta(\Delta \mathrm{P})$.
-Conductance of network change by $\delta \Sigma \sim \delta \mathrm{N} \sim \delta(\Delta \mathrm{P})$.
-Integrate to find $\mathrm{Q} \sim\left(\Delta \mathrm{P}-\Delta \mathrm{P}_{\mathrm{c}}\right)^{2}$.

> Bingham plastic

Effective medium theory

Generalized Darcy equation:

$$
Q=-C \frac{A}{L} \frac{K\left(S_{n w}\right)}{\mu_{\mathrm{eff}}\left(S_{n w}\right)} \operatorname{sgn}(\Delta P)\left\{\begin{array}{cl}
\left(|\Delta P|-\Delta P_{c}\left(S_{n w}\right)\right)^{2} & \text { if }|\Delta P|>\Delta P_{c} \\
0 & \text { if }|\Delta P| \leq \Delta P_{c}
\end{array}\right.
$$

Sinha and Hansen, Europhys. Lett., in press (2012).

Numerical results

The threshold pressure ΔP_{c}

$\Delta \mathrm{P}_{\mathrm{c}}$ is independent of viscosity ratio M , but depends on saturation s.
Optimal path landscape:

$\Delta \mathrm{P}_{\mathrm{c}}=\min _{\text {path }} \Sigma_{\mathrm{i} \in \text { path }} \Delta \mathrm{p}_{\mathrm{c} \mathrm{i}}$

Reanalyzing the Rassi et al. data.

Figure 5. Average steady-state pressure drop versus capillary number for each repetition I-IV. The straight lines show the power-law fits for each repetition: $\mathrm{I}, \beta=0.35$ III, $\beta=0.3$; III, $\beta=0.45$; and IV, $\beta=0.3$.

$$
Q=-C \frac{A}{L} \frac{K\left(S_{n w}\right)}{\mu_{\mathrm{eff}}\left(S_{n w}\right)} \operatorname{sgn}(\Delta P)\left\{\begin{array}{cl}
\left(|\Delta P|-\Delta P_{c}\left(S_{n w}\right)\right)^{2} & \text { if }|\Delta P|>\Delta P_{c}, \\
0 & \text { if }|\Delta P| \leq \Delta P_{c},
\end{array}\right.
$$

$$
q \sim\left(\Delta p-\Delta p_{c}\right)^{1 / 2}
$$

$\mathrm{Q} \sim\left(\Delta \mathrm{p}-\Delta \mathrm{p}_{\mathrm{c}}\right)^{2}$

Experimental study of Steady-State flow in Hele-Shaw Cell

Tallakstad et al. Phys. Rev. Lett. 102, 074502 (2009)

FIG. 2. Mean pressure difference ΔP_{L} during steady state as a function of Ca . The fluctuations in ΔP_{L} are of the order of 1 KPa , i.e., very small compared to the mean values. A power 1.dw dependence is found, with exponent $\beta=0.54 \pm 0.08$.

System prepared so that one of the fluids pergolates:

$$
\Delta \mathrm{P}_{\mathrm{c}} \approx 0
$$

(There is some curvature)

4. Statistical Mechanics of Porous Media Flow

Returning to the concept of a state.

Sinha, 2012

Sequence of configurations through time integration:

The order of the configurations has been randomized:

This randomization does not change the statistics.

If order plays no role: All steady-state properties will be completely described by the configurational probability distribution $\Pi\{c f\}$ where $\{c f\}$ signifies the positions of all interfaces between the immiscible fluids in the porous medium.

A configuration is fully described by the position of all interfaces.

This leads to a statistical mechanics for porous media.

Metropolis Monte Carlo Sampling

Configurational probability

$\Pi\{c f\}$

Old configuration \Rightarrow Test configuration \{cfold ${ }_{\text {old }}$

Chosen by random change of old configuration.

Draw a random number $r \in[0,1]$.
If $\Pi\left\{\mathrm{cf}_{\text {old }}\right\} / \Pi\left\{\mathrm{cf}_{\text {test }}\right\}>\mathrm{r}$: Reject test configuration.

If $\Pi\left\{\mathrm{cf}_{\text {old }}\right\} / \Pi\left\{\mathrm{cf}_{\text {test }}\right\} \leq \mathrm{r}$: Accept test configuration.

Can we derive $\Pi\{c f\}$?

Flow through a single tube

Sinha et al. to be submitted this week (2012)

$$
q=-\frac{\pi r_{0}^{4}}{8 \mu_{a v} l}\left(\Delta p-p_{c}\left(x_{b}\right)\right)
$$

$$
\dot{x}_{b}=-\frac{r_{0}^{2}}{8 l \mu_{a v}}\left[\Delta p-\gamma \sin \left(\frac{2 \pi x_{b}}{l}\right)\right]
$$

$f\left(x_{b}\right)$ is some function of x_{b}.

$$
\begin{aligned}
& \langle f\rangle=\frac{1}{T} \int_{0}^{T} f\left(x_{b}(t)\right) d t=\int_{0}^{l} f\left(x_{b}\right) \frac{1}{T} \frac{d t}{d x_{b}} d x_{b} \\
& =\int_{0}^{l} f\left(x_{b}\right) \frac{\pi r_{0}^{2}}{T} \frac{1}{q\left(x_{b}\right)} d x_{b}=\int_{0}^{l} f\left(x_{b}\right) \Pi\left(x_{b}\right) d x_{b}
\end{aligned}
$$

$$
\Pi\left(x_{b}\right)=\frac{\pi r_{0}^{2}}{T} \frac{1}{q\left(x_{b}\right)}
$$

$\Pi\{c f\}$ for a porous medium.

Microcanonical ensemble:

Isolated system:

Summary:

1. Steady-State Flow in the Laboratory
2. Steady-State Flow on the Computer
3. Nonlinear Rheology
4. Statistical Mechanics of Porous Media Flow
