

Electrokinetic response of "standard particles" and more...

Claire Chassagne, Maria Ibanez, Guus Stelling

Environmental Fluid Mechanics

Civil Engineering and Geosciences

Delft University of Technology

System

1) "standard" particles :

 \Rightarrow constant charge = 0,04 C/m^2 (sulfate latex)

- \Rightarrow radius = 265 nm (TEM)
- \Rightarrow monodisperse
- \Rightarrow Suspending medium: demi-water + salts

System

- 2) "more" = non-spherical particles :
- \Rightarrow kaolinite, gibbsite, goethite (clays, oxides)
- \Rightarrow non-ideal

zeta pot. > interactions > rheology

Influence of anions on the theological properties of clay mineral dispersions

Author(s): Penner, D (Penner, D); Lagaly, G (Lagaly, G)

Source: APPLIED CLAY SCIENCE Volume: 19 Issue: 1-6 Special Issue: SI Pages: 131-142 DOI: 10.1016/S0169-1317(01)00052-7 Published: JUL 2001

Times Cited: 41 (from Web of Science)

Cited References: 72 [view related records] 🛛 🐼 Citation Map

Conference: European Clay Conference on Surface Modification of Clay Minerals (EUROCLAY '99) Location: KRAKOW, POLAND Date: SEP 05-09, 1999

Abstract: The flow behavior of sodium montmorillonite dispersions and kaolin slurries can have different responses to anionic dispersants. Viscosity, pH, and dynamic mobility measurements using a variety of salts help elucidate this important observation. The flow behavior is determined not only by the counterions but also by the colons (anions) surrounding the clay mineral particles. The viscosity of sodium montmorillonite dispersions with increasing salt or acid concentration decreased to a minimum, then increased sharply. The concentration at this point was identified as the critical coagulation concentration, c(K). Salts with multivalent anions such as sulphates and phosphates increased the critical coagulation concentration. Na4P2O7 actually impeded coagulation. The liquefying effect of these anions was counterbalanced by the protons of acidic salts such as NaHSO4, Na2HPO4, and NaH2PO4 and by acids. The critical coagulation concentration for sodium montmorillonite was a function of the montmorillonite concentration and the type of ion. In 2% sodium montmorillonite dispersions, c(K) for sodium chloride and sulphate was higher than c(K) in dilute dispersions (0.025%). For the strongly liquefying agents Na2HPO4, NaH2PO4, and H3PO4, the opposite was true. The c(K) values for the dilute dispersion were 1100, 460, and 32 mmol/l respectively, and for the 2% dispersion 80, 40, and 10 mmol/l. Kaolinite dispersions in contrast to sodium montmorillonite showed the pronounced liquefying effect of multivalent anions up to high salt concentrations. The data underscored the complexity of dispersed systems. For example, the dynamic mobility of the particles and the viscosity of the system were not always directly related. An interesting aspect concerns the dynamic mobility of the particles and the viscosity of the system were not always directly related. An interesting aspect concerns the dynamic mobility of the particles which in different ways changed with concentration of salts and acids. (C) 2001 Elsevier Science B.V.

Application

Assumptions

- T = constant (no "thermo-dynamic")
- **E** = applied electric field (but "electro-dynamic") E(V/cm) << zeta potential (mV)/ double layer (nm) \Rightarrow X = Xeq + dX double layer (ion cloud) ζ (zeta potential) Shear plane = surface particle : $\zeta = \Psi_0$

Relation charge / potential at eq.

$$\left(\frac{d\Psi_{eq}}{dx}\right)_{x=0} = \frac{-\sigma}{\varepsilon}$$

We will assume a **constant surface charge** :

fixe charge => find the zeta potential for each ionic strength using (PB) + bisection method

$$\nabla^2 \Psi_{eq} = \kappa^2 \sinh\left(\Psi_{eq}\right) \quad \kappa^{-1} = \sqrt{\frac{\varepsilon_0 \varepsilon_1 kT}{2e^2 N_A Cs}}$$

Surface potential / added salt in case of a constant charge

Standard electrokinetic equations

Poisson :
$$\nabla^2 \delta \Psi = \frac{-1}{\varepsilon_0 \varepsilon_1} \sum e z_i \delta n_i$$

Conservation of mass:

$$\mathbf{J}_{i} = n_{i,eq} \mathbf{u} - n_{i,eq} D \nabla \left[\frac{z_{i}e}{kT} \delta \Psi + \frac{\delta n_{i}}{n_{i,eq}} \right]$$
$$\frac{\partial \delta n_{i}}{\partial t} + \nabla \cdot \mathbf{J}_{i} = 0.$$
Note:
$$\mathbf{u}_{tot} = \mathbf{u}_{eq} + \delta \mathbf{u} = \delta \mathbf{u} \equiv \mathbf{u}.$$

Standard electrokinetic equations

Boundary conditions

Potential :
$$\varepsilon_0 \varepsilon_2 \left(\frac{\partial (\delta \Psi_2)}{\partial r}\right)_{r=a} = \varepsilon_0 \varepsilon_1 \left(\frac{\partial (\delta \Psi)}{\partial r}\right)_{r=a}$$

 $\delta \Psi_2(a) = \delta \Psi(a), \quad (\Delta \delta \Psi_2 = 0)$

No flux:
$$(\mathbf{J}_i \cdot \mathbf{e}_r)_{r=a} = 0$$

No slip:
$$\mathbf{u}(r=a) = \mathbf{0}$$
 $\mathbf{u}(\infty) = -\mathbf{U}$

Electrophoresis standard electrokinetic equations

relation electrophoretic mobility / zeta potential:

Electrophoresis constant zeta potential

 $f\zeta$

added mM of salt

same behavior for 2800 nm spheres (Kobayashi, Colloid Polym Sci (2008) 286:935–940)

Gittings and Saville, Colloids and Surfaces A (1998)

Hairy layer : Particle size / added salt DLS and TEM

Gittings and

Electrophoresis / particle concentration

Summary for spheres

- Standard theory describes reasonably well the electrokinetic behavior of the latex particles, with no adjustable parameter (electrophoresis, dielec. spectro., conductivity)

- adding a Stern layer conductance does not improve the fit

=> hairy layer ("soft particles") could be explanation for shifting the shear plane approx. 0.25 nm from the particle surface

- behavior as function of particle volume fraction follows prediction for nearly no salt

Outlook electrokinetic response of spheroidal particles

2008 : => analytical solution (reproduce O'Brien + Loewenberg)

C. Chassagne, D. Bedeaux / Journal of Colloid and Interface Science 326 (2008) 240–253

2012 : => numerical solution (=> improve analytical solution)

Prolate spheroids (cigars)

Prolate spheroids (cigars)

Oblate spheroids (mentos)

Doppler electrophoresis at **low** volume fraction (original vol. frac. = 0.6%)

30 20 10 - Zeta potential (mV) 0 0,1 100 0,01 1000 10 -30 -40 → Na2SO4 (1/80) Na2SO4 (1/60) -50 - Na2SO4 (1/40) volume fraction \mathbf{i} - Na2SO4 (1/20) -70 concentration salt(mM)

Gibbsite (original conc. : 16 mg/L)

