Coupling Reactions and Molecular Conformations in the Modeling of Shear Banding in Wormlike Micelar Systems

Antony N. Beris, Natalie Germann* and Pam Cook*

*Department of Mathematical Sciences

6th International Workshop on Nonequilibrium Thermodynamics And 3rd Lars Onsager Symposium August 20, 2012

- **1. Motivation**
- 2. Introduction to Micellar Systems and Shear Banding
- **3. NET Treatment of Chemical Reactions**
- 4. Application to Micellar Systems and Homogeneous Flow Results

New Application: Rod-like Micellar Systems

Concentration

- •Johnson-Segalmann-Olmsted model (Olmsted et al., J. Rheol., 2000)
- •Giesekus model with stress-driven diffusion (Helgeson et al., J. Rheol., 2009)
- Vasquez-Cook-McKinley (VCM) model (Vasquez et al., JNNFM., 2007; Zhou

Frameworks:

- •Generalized bracket approach (Beris & Edwards, Thermodynamics of Flowing Systems, 1994)
- •General equation for the non-equilibrium reversible-irreversible coupling (GENERIC) (Öttinger, Beyond Equilibrium Thermodynamics, 2005)

Breakable/reformable elastic dumbbells + viscous solvent

Clausen et al. (1992) J. Phys. Chem.

System variables

Number Densities:
$$n_A = \rho_A / M_A N_A$$
; $n_B = \rho_B / M_B N_A$
Conformation Tensor Densities: $C_A = n_A c_A$; $C_B = n_B c_B$; $c_i = \langle Q_i Q_i \rangle$
 $\langle Q_i Q_i \rangle$ is the second moment of the end-to-end connection vector, Q_i , for component *i*
Momentum Density: $\mathbf{M} = \rho \mathbf{v}$; $\rho = \rho_A + \rho_B + \rho_S$

- Assume that the system:
 - involves *n* components, optionally with internal structure and
 - participates in I chemical reactions
- For each component, i = 1, 2, ..., n, the following primary variables are defined:
 - the mass density, ρ_i
 - the momentum density, \mathbf{m}^i , $\mathbf{m}^i = \rho_i \mathbf{v}^i$
 - (optionally) the internal structural tensor parameter density, \mathbf{C}^i , $\mathbf{C}^i = n_i \mathbf{c}^i$

where:

- \mathbf{v}^i is the mass-based velocity of component i
- $n_i = \frac{\rho_i}{M_i} N_A$ is the number density of component *i*

 \mathbf{c}^{i} is the conformation tensor of component *i*; $\mathbf{c}^{i} = \langle \mathbf{Q}^{i} \mathbf{Q}^{i} \rangle$

 $\langle \mathbf{Q}^{i}\mathbf{Q}^{i}\rangle$ is the second moment of the end-to-end connection vector, \mathbf{Q}^{i} , for component *i*

• It preserves standard transition theory kinetics that assigns for the corresponding forward (-) and reverse (+) flux of the reaction *I*, an Arhenius dependence on the corresponding affinity:

$$J_{I}^{\mp} = k_{I} \left(P, T \right) \exp \left(-\frac{A_{I}^{\mp}}{RT} \right)$$

• However, a generalized affinity is proposed in order to also accommodate other, nonequilibrium, changes associated with the reaction *I*, such as momentum and conformation (for entropy one needs a more general (GENERIC) formulation):

$$A_{I}^{\mp} = -\sum_{k=1}^{n} \gamma_{Ik}^{\mp} M_{k} \left(\frac{\delta H}{\delta \rho_{k}} + \frac{m_{\alpha}^{k}}{\rho_{k}} \left(\frac{\delta H}{\delta m_{\alpha}^{k}} \right)_{G} + \frac{C_{\alpha\beta}^{k}}{\rho_{k}} \frac{\delta H}{\delta C_{\alpha\beta}^{k}} \right)_{G}$$

where $\left(\frac{\delta H}{\delta m_{\alpha}^{k}}\right)_{G}$ represents the Galilean invariant contribution: $\left(\frac{\delta H}{\delta m_{\alpha}^{k}}\right)_{G} \equiv v_{\alpha}^{k} - v_{\alpha} = \frac{\delta H}{\delta m_{\alpha}^{k}} - \frac{\delta H}{\delta m_{\alpha}} = \frac{\delta H}{\delta m_{\alpha}^{k}} - \sum_{m=1}^{n} \frac{\rho_{m}}{\rho} \frac{\delta H}{\delta m_{\alpha}^{m}}$

$$\begin{split} F,H]_{I} &= J_{I}^{-} \left(-\sum_{k=1}^{n} \gamma_{Ik}^{-} M_{k} \left(\frac{\delta F}{\delta \rho_{k}} + \frac{m_{\alpha}^{k}}{\rho_{k}} \left(\frac{\delta F}{\delta m_{\alpha}^{k}} \right)_{G} + \frac{C_{\alpha\beta}^{k}}{\rho_{k}} \frac{\delta F}{\delta C_{\alpha\beta}^{k}} \right)_{G} + \frac{C_{\alpha\beta}^{k}}{\rho_{k}} \frac{\delta F}{\delta C_{\alpha\beta}^{k}} \\ &- \frac{1}{\sum_{k'=1}^{n} \gamma_{Ik'}^{+} M_{k'}} \sum_{k''=1}^{n} \gamma_{Ik''}^{+} M_{k''} \left(\frac{\delta F}{\delta \rho_{k''}} + \frac{m_{\alpha}^{k}}{\rho_{k}} \left(\frac{\delta F}{\delta m_{\alpha}^{k''}} \right)_{G} + \frac{C_{\alpha\beta}^{k}}{\rho_{k}} \frac{\delta F}{\delta C_{\alpha\beta}^{k''}} \right) \right) \right) \\ &+ J_{I}^{+} \left(-\sum_{k=1}^{n} \gamma_{Ik}^{+} M_{k} \left(\frac{\delta F}{\delta \rho_{k}} + \frac{m_{\alpha}^{k}}{\rho_{k}} \left(\frac{\delta F}{\delta m_{\alpha}^{k}} \right)_{G} + \frac{C_{\alpha\beta}^{k}}{\rho_{k}} \frac{\delta F}{\delta C_{\alpha\beta}^{k}} \right) \\ &- \frac{1}{\sum_{k'=1}^{n} \gamma_{Ik'}^{-} M_{k''}} \sum_{k''=1}^{n} \gamma_{Ik''}^{-} M_{k''} \left(\frac{\delta F}{\delta \rho_{k''}} + \frac{m_{\alpha}^{k}}{\rho_{k}} \left(\frac{\delta F}{\delta m_{\alpha}^{k''}} \right)_{G} + \frac{C_{\alpha\beta}^{k}}{\rho_{k}} \frac{\delta F}{\delta C_{\alpha\beta}^{k''}} \right) \right) \end{split}$$

- It duly satisfies Onsager's reciprocity relations
- It does not affect the overall momentum equation
- It redistributes among the products the excess momentum and conformation

* to within an entropy correction term, not needed for isothermal processes

Breakage & reformation kinetics

Approach: Extension of chemical reaction kinetics in (Beris & Edwards, Thermodynamics of Flowing Systems, 1994) to viscoelastic systems

Stoichiometric equation

$$A \xrightarrow{C_{A}} 2 B$$
Flux: $J^{\mp} = k \exp\left(-\frac{A^{\mp}}{RT}\right)$
Affinity: $A^{\mp} = -\sum_{k} \gamma_{k}^{\mp} M_{k} \left(\frac{\delta H}{\delta \rho_{k}} + \frac{C_{\alpha\beta}^{k}}{\rho_{k}} \frac{\delta H}{\delta C_{\alpha\beta}^{k}}\right) \quad (k = A, B)$

$$\rho_{k}\text{-transfer} \quad C_{\alpha\beta}^{k}\text{-transfer}$$

 $(k=\mathrm{A},\mathrm{B};k'=\mathrm{A},\mathrm{B};k''=\mathrm{A},\mathrm{B})$

Model (without momentum & stress equations)

Non-dimensionalization

Time: $\widetilde{t}=t/\lambda_{ ext{eff}}$	Length:	$\widetilde{x}_{lpha} = x_{lpha}/H$	Pressure:	$\widetilde{p} = p/G_0$	
Number density:	$\widetilde{n}_k = n_k/2$	$n_{\mathrm{Aeq}} \; (k = \mathrm{A}, \mathrm{B})$			
Conformation:	$\widetilde{c}_{\alpha\beta}^{k}=\left(K_{\mathrm{A}}/\left(k_{\mathrm{B}}T\right)c_{\alpha\beta}^{k}~(k=\mathrm{A},\mathrm{B}\right)$				
Stress:	$\widetilde{\sigma}^k_{\alpha\beta}=\sigma^k_{\alpha\beta}$	$_{g}/G_{0} \; (k=\mathrm{A},\mathrm{B},\mathrm{to})$	$\mathbf{stal}, \mathbf{solvent})$		

Dimensionless numbers

Reynolds number:	$Re= ho H^2/\left(\lambda_{ m eff}^2G ight)$	$\mathcal{F}_0)$	
Deborah number:	$De = \lambda_{ m eff} V/H$		
Viscosity ratio:	$eta=\eta_s/\eta_0$	Relaxation time ratio:	$arepsilon=\lambda_{ m B}/\lambda_{ m A}$
Reaction rate:	$\widetilde{c}_{\mathrm{Aeq}} = \lambda_{\mathrm{A}} c_{\mathrm{Aeq}}$		
Reformation rate:	$\widetilde{c}_{\mathrm{Beq}} = \lambda_{\mathrm{A}} c_{\mathrm{Beq}} n_{\mathrm{Aeq}}$	1	

Parameters:
$$\beta = 7 \times 10^{-5}$$
; $\varepsilon = 10^{-4}$; $\widetilde{c}_{Aeq} = 1$; $\widetilde{c}_{Beq} = 10^{-2}$

γ

Non-dimensionalization

Time:
$$\tilde{t} = t/\lambda_{eff}$$
:Length: $\tilde{x}_{\alpha} = x_{\alpha}/H$ Pressure: $\tilde{p} = p/G_0$ Number density: $\tilde{n}_k = n_k/n_{Aeq}$ ($k = A, B, C$)Conformation: $\tilde{c}_{\alpha\beta}^k = (K_A/(k_BT) c_{\alpha\beta}^k (k = A, B, C)$ Stress: $\tilde{\sigma}_{\alpha\beta}^k = \sigma_{\alpha\beta}^k/G_0$ ($k = A, B, C$, solvent)

Dimensionless numbers

Viscosity ratio: $\beta = \eta_s/\eta_0 = 7 \times 10^{-5}$

Ratios of relaxation times $\varepsilon = \lambda_{\rm B}/\lambda_{\rm A} = 10^{-4}$ $\zeta = \lambda_{\rm C}/\lambda_{\rm A} = 0.01$ Reaction rates: $\tilde{c}_{\rm Aeq,1} = \lambda_{\rm A}c_{\rm Aeq,1} = 1$ $\tilde{c}_{\rm Beq,2} = \lambda_{\rm A}c_{\rm Beq,2} = 0.01$ $\tilde{c}_{\rm Ceq,1} = \lambda_{\rm A}c_{\rm Ceq,1} = 300$ $\tilde{c}_{\rm Ceq,2} = \lambda_{\rm A}c_{\rm Ceq,2} = 20$

- We have corrected and significantly extended the description within NET that first appeared in our previous work [Beris and Edwards, 1994] of chemical reactions taking into account momentum and (for systems with internal structure) conformation transfers during each elementary reaction
- The new description allows for reaction rates that are conformation-dependent:
 - This can explain some very recent experiments on DNA scission under extension [Muller et al., ICR Lisbon, 2012]
 - The new description has been applied to the modeling of a system of concentrated rodlike micelles:
 - The new model produces very similar, non-monotonic shear stress vs. shear rate, predictions for homogeneous shear flows, while being thermodynamically consistent and requiring fewer parameters
 - The new model can be easily extended to more physically realistic situations (for example, allowing for a third species)
- Future work: Extension of the model to nonhomogeneous flows, along the lines of a multifluid approach in order to simulate shear-banding phenomena.

Prof. Norman J. Wagner (UD, C&B Engineering)

Prof. Hans Christian Oettinger (ETH, Zurich)

Reaction:

$$A \stackrel{e_{\mathbf{A}}}{\underset{e_{\mathbf{B}}}{\rightleftharpoons}} 2B$$

Dimensional model equations:

$$\begin{split} \frac{\partial n_{\rm A}}{\partial t} &= -\nabla_{\alpha} \left(v_{\alpha} n_{\rm A} \right) - c_{\rm A} n_{\rm A} + \frac{1}{2} c_{\rm B} n_{\rm B}^2 \\ \frac{\partial n_{\rm B}}{\partial t} &= -\nabla_{\alpha} \left(v_{\alpha} n_{\rm B} \right) + 2 c_{\rm A} n_{\rm A} - c_{\rm B} n_{\rm B}^2 \\ \rho \frac{\partial v_{\alpha}}{\partial t} &= -\rho v_{\beta} \nabla_{\beta} v_{\alpha} - \nabla_{\alpha} p + \nabla_{\beta} \sigma_{\alpha\beta} \\ \frac{\partial C_{\alpha\beta}^A}{\partial t} &= -\nabla_{\gamma} \left(v_{\gamma} C_{\alpha\beta}^A \right) + C_{\gamma\alpha}^A \nabla_{\gamma} v_{\beta} + C_{\gamma\beta}^A \nabla_{\gamma} v_{\alpha} \\ &- \frac{1}{\lambda_{\rm A}} \left(C_{\alpha\beta}^A - \frac{n_{\rm A} k_{\rm B} T}{K_{\rm A}} \delta_{\alpha\beta} \right) - c_{\rm A} C_{\alpha\beta}^A + c_{\rm B} n_{\rm B} C_{\alpha\beta}^B \\ \frac{\partial C_{\alpha\beta}^B}{\partial t} &= -\nabla_{\gamma} \left(v_{\gamma} C_{\alpha\beta}^B \right) + C_{\gamma\alpha}^B \nabla_{\gamma} v_{\beta} + C_{\gamma\beta}^B \nabla_{\gamma} v_{\alpha} \\ &- \frac{1}{\lambda_{\rm B}} \left(C_{\alpha\beta}^B - \frac{n_{\rm B} k_{\rm B} T}{K_{\rm B}} \delta_{\alpha\beta} \right) + c_{\rm A} C_{\alpha\beta}^A - c_{\rm B} n_{\rm B} C_{\alpha\beta}^B \\ \sigma_{\alpha\beta} &= \sigma_{\alpha\beta}^A + \sigma_{\alpha\beta}^B + \sigma_{\alpha\beta}^B \\ \sigma_{\alpha\beta}^A &= K_{\rm A} C_{\alpha\beta}^A - n_{\rm A} k_{\rm B} T \delta_{\alpha\beta} \\ \sigma_{\alpha\beta}^B &= K_{\rm B} C_{\beta\beta}^B - n_{\rm B} k_{\rm B} T \delta_{\alpha\beta} \\ \sigma_{\alpha\beta}^B &= m_{\rm B} C_{\alpha\beta}^B - n_{\rm B} k_{\rm B} T \delta_{\alpha\beta} \\ \sigma_{\alpha\beta}^B &= m_{\rm B} C_{\alpha\beta}^B - n_{\rm B} k_{\rm B} T \delta_{\alpha\beta} \\ \sigma_{\alpha\beta}^B &= m_{\rm B} C_{\alpha\beta}^B - n_{\rm B} k_{\rm B} T \delta_{\alpha\beta} \\ \sigma_{\alpha\beta}^B &= m_{\rm B} C_{\alpha\beta}^B - n_{\rm B} k_{\rm B} T \delta_{\alpha\beta} \\ \sigma_{\alpha\beta}^B &= m_{\rm B} C_{\alpha\beta}^B - n_{\rm B} k_{\rm B} T \delta_{\alpha\beta} \\ c_{\rm B} &= c_{\rm Aeq} \frac{\exp\left(\frac{t_{\rm K} \sigma^A}{2 n_{\rm A} k_{\rm B} T}\right)}{\sqrt{\det\left(\frac{t_{\rm K} \sigma^B}{n_{\rm B} k_{\rm B} T}\right)}} \end{split}$$

Dimensional Three-Species Model

Reactions:

$$A \xleftarrow[]{e_{C,1}} 2C$$
$$C \xleftarrow[]{e_{C,2}} 2B$$

Dimensional model equations:

$$\begin{split} \frac{\partial n_{\rm A}}{\partial t} &= -\nabla_{\alpha} \left(v_{\alpha} n_{\rm A} \right) - c_{\rm A,1} n_{\rm A} + \frac{1}{2} c_{\rm C,1} n_{\rm C}^2 \\ \frac{\partial n_{\rm C}}{\partial t} &= -\nabla_{\alpha} \left(v_{\alpha} n_{\rm C} \right) + 2 c_{\rm A,1} n_{\rm A} - c_{\rm C,1} n_{\rm C}^2 - c_{\rm C,2} n_{\rm C} + \frac{1}{2} c_{\rm B,2} n_{\rm B}^2 \\ \frac{\partial n_{\rm B}}{\partial t} &= -\nabla_{\alpha} \left(v_{\alpha} n_{\rm B} \right) + 2 c_{\rm C,2} n_{\rm C} - c_{\rm B,2} n_{\rm B}^2 \\ \rho \frac{\partial v_{\alpha}}{\partial t} &= -\rho v_{\beta} \nabla_{\beta} v_{\alpha} - \nabla_{\alpha} p + \nabla_{\beta} \sigma_{\alpha\beta} \\ \frac{\partial C_{\alpha\beta}^{\rm A}}{\partial t} &= -\nabla_{\gamma} \left(v_{\gamma} C_{\alpha\beta}^{\rm A} \right) + C_{\gamma\alpha}^{\rm A} \nabla_{\gamma} v_{\beta} + C_{\gamma\beta}^{\rm A} \nabla_{\gamma} v_{\alpha} \\ &\quad - \frac{1}{\lambda_{\rm A}} \left(C_{\alpha\beta}^{\rm A} - \frac{n_{\rm A} k_{\rm B} T}{K_{\rm A}} \delta_{\alpha\beta} \right) - c_{\rm A,1} C_{\alpha\beta}^{\rm A} + c_{\rm C,1} n_{\rm C} C_{\alpha\beta}^{\rm C} \\ \frac{\partial C_{\alpha\beta}^{\rm C}}{\partial t} &= -\nabla_{\gamma} \left(v_{\gamma} C_{\alpha\beta}^{\rm C} \right) + C_{\gamma\alpha}^{\rm C} \nabla_{\gamma} v_{\beta} + C_{\gamma\beta}^{\rm C} \nabla_{\gamma} v_{\alpha} \\ &\quad - \frac{1}{\lambda_{\rm C}} \left(C_{\alpha\beta}^{\rm C} - \frac{n_{\rm C} k_{\rm B} T}{K_{\rm B}} \delta_{\alpha\beta} \right) + c_{\rm A,1} C_{\alpha\beta}^{\rm A} - c_{\rm C,1} n_{\rm C} C_{\alpha\beta}^{\rm C} - c_{\rm C,2} C_{\alpha\beta}^{\rm C} + c_{\rm B,2} n_{\rm B} C_{\alpha\beta}^{\rm B} \\ \frac{\partial C_{\alpha\beta}^{\rm B}}{\partial t} &= -\nabla_{\gamma} \left(v_{\gamma} C_{\alpha\beta}^{\rm B} \right) + C_{\gamma\alpha}^{\rm C} \nabla_{\gamma} v_{\beta} + C_{\gamma\beta}^{\rm C} \nabla_{\gamma} v_{\alpha} \\ &\quad - \frac{1}{\lambda_{\rm C}} \left(C_{\alpha\beta}^{\rm C} - \frac{n_{\rm C} k_{\rm B} T}{K_{\rm B}} \delta_{\alpha\beta} \right) + c_{\rm A,1} C_{\alpha\beta}^{\rm A} - c_{\rm C,1} n_{\rm C} C_{\alpha\beta}^{\rm C} - c_{\rm C,2} C_{\alpha\beta}^{\rm C} + c_{\rm B,2} n_{\rm B} C_{\alpha\beta}^{\rm B} \\ \frac{\partial C_{\alpha\beta}^{\rm B}}{\partial t} &= -\nabla_{\gamma} \left(v_{\gamma} C_{\alpha\beta}^{\rm B} \right) + C_{\gamma\alpha}^{\rm B} \nabla_{\gamma} v_{\beta} + C_{\gamma\beta}^{\rm B} \nabla_{\gamma} v_{\alpha} \\ &\quad - \frac{1}{\lambda_{\rm B}} \left(C_{\alpha\beta}^{\rm B} - \frac{n_{\rm B} k_{\rm B} T}{K_{\rm C}} \delta_{\alpha\beta} \right) + c_{\rm C,2} C_{\alpha\beta}^{\rm C} - c_{\rm B,2} n_{\rm B} C_{\alpha\beta}^{\rm B} \end{split}$$

$$\sigma_{\alpha\beta} = \sigma_{\alpha\beta}^{A} + \sigma_{\alpha\beta}^{C} + \sigma_{\alpha\beta}^{B} + \sigma_{\alpha\beta}^{s}$$

$$\sigma_{\alpha\beta}^{A} = K_{A}C_{\alpha\beta}^{A} - n_{A}k_{B}T\delta_{\alpha\beta}$$

$$\sigma_{\alpha\beta}^{C} = K_{C}C_{\alpha\beta}^{C} - n_{C}k_{B}T\delta_{\alpha\beta}$$

$$\sigma_{\alpha\beta}^{B} = K_{B}C_{\alpha\beta}^{B} - n_{B}k_{B}T\delta_{\alpha\beta}$$

$$\sigma_{\alpha\beta}^{s} = \eta_{s}(\nabla_{\alpha}v_{\beta} + \nabla_{\beta}v_{\alpha})$$

$$c_{A,1} = c_{Aeq,1}\frac{\exp\left(\frac{tr\sigma^{A}}{2n_{A}k_{B}T}\right)}{\sqrt{\det\left(\frac{K_{A}C^{A}}{n_{A}k_{B}T}\right)}}$$

$$c_{C,1} = c_{Ceq,1}\frac{\exp\left(\frac{tr\sigma^{C}}{n_{C}k_{B}T}\right)}{\det\left(\frac{K_{C}C^{C}}{n_{C}k_{B}T}\right)}$$

$$c_{C,2} = c_{Ceq,2}\frac{\exp\left(\frac{tr\sigma^{B}}{2n_{C}k_{B}T}\right)}{\sqrt{\det\left(\frac{K_{C}C^{C}}{n_{C}k_{B}T}\right)}}$$

$$c_{B,2} = c_{Beq,2}\frac{\exp\left(\frac{tr\sigma^{B}}{n_{B}k_{B}T}\right)}{\det\left(\frac{K_{B}C^{B}}{n_{B}k_{B}T}\right)}$$

* Preliminary results based on simplified diffusion model