
© Appl. Rheol. 26 (2016) 15199 |   DOI: 10.3933/ApplRheol-26-15199 |   1 |

trostatic and/or steric forces between the particles [14,
15]. Electrostatic stabilization is based on adsorption of
ions or charged polymers on the surface of the particles
which creates an electric double layer, whereas steric
stabilization can be achieved by adsorption of the large
molecules such as polymers forming steric barriers to
prevent particles approaching too close.
         For stabilization of the aqueous titania disper-
sions, low-molecular-weight additives such as maleic,
fumaric [9], citric acids [16] have been investigated.
How ever, high-molecular-weight additives such as
poly(meth)acrylates [12, 17 – 20], poly(acrylamides) [21],
and poly(ethylene imines) [15] show better stabilization
effects due to stronger adsorption onto oppositely
charged surfaces of the titania particles. Adsorption of
a long-chain polymer usually involves the attraction of
polymer segments to the surface, so that if the affinity
of individual segments with the surface is weak as in
the case of low-molecular-weight additives, the poly-
mer chain as a whole can still be strongly attracted [15].
The best effect of stabilization was achieved using
comb and brush-type polyelectrolytes [13, 14, 22 – 25],
which have a dual stabilizing effect based on electro-
static interactions of the charged groups and steric

1      INTRODUCTION

Titanium dioxide (TiO2) remains the most widely used
white pigment because of its brightness and very high
refractive index (n = 2.5 – 2.7). It is effectively applied in
powder form as a pigment providing whiteness and
opacity to products such as paints [1], coatings, plastics,
and inks [2]. Particles of titanium dioxide can be used
for bioceramic applications [3] and for the synthesis of
nanostructured ceramics [4] as UV absorbers, photo cat-
alysts [5], and in antibacterial [6] and self-cleaning coat-
ings [7]. In most of the above applications titania parti-
cles are used in the dispersed form. Titania nanoparti-
cles due to a high surface area and a high Hamaker con-
stant in water (A= 5.35 x 10-20 J) [8] have a high tendency
to agglomerate, thus, such dispersions are unstable and
sediment rapidly. Special additives are known to sub-
stantially affect dispersion stability and rheology of the
colloidal dispersions [9 – 14]. These additives adsorb on
the surface of the particles and change inter-particle
interactions. Effectiveness of the additives, depend on
their molecular structure as the additives usually con-
tain charged or bulky groups. Usually, stabilization of
the colloidal dispersions is related to a control of elec-
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bilization of the concentrated titania nanoparticle dis-
persions at alkaline (pH 10) conditions? High charge
density is a prerequisite for strong adsorption of the
copolymers on oppositely charged surface of titania
and formation of stable adsorbed layers [27]. High
charge density (65 mol% of the charged units) means
that only one third of the repeating units of the copoly-
mers contains PEO side chains. Possibly, such density of
PEO chains is sufficient for creation of steric barriers
preventing the nanoparticles approaching too close
and agglomeration. In this approach, the comb copoly-
mers with longer PEO side chains (45 repeating units of
EO) should not behave worse and even increase steric
barriers around the nanoparticles. An increase in vis-
cosity of the dispersions treated by the cationic comb
copolymers with the longest side chains could be ex -
plained by interpenetration of the chains forming bar-
rier layers around the nanoparticles under applied
shear stress. Relatively high viscosity of the concentrat-
ed titania dispersions treated by the cationic comb
copolymers with short side chains (x = 5, 9) is likely relat-
ed to rather small steric barrier around the nanoparti-
cles insufficient for achieving full steric stabilization.

4     CONCLUSIONS

Dynamic viscosity of the ceramic based alkaline (pH
10.0) concentrated dispersions of the bare titania with
the solid loading 15 – 25 wt. % was rather high, about
1 Pa·s, and the dispersions exhibited shear-thinning
flow behavior. For electrostatic and steric stabilization
of the concentrated titania nanoparticle dispersions at
alkaline conditions, the nanodispersions were treated
with the cationic comb copolymers differing in charge
density and the length of PEO side chains. The ceramic
based alkaline (pH 10.0) concentrated titania nanopar-
ticle dispersions treated by the cationic comb copoly-
mers acted as Newtonian fluids at low and medium
shear rates (< 200 s-1), and showed shear-thickening

flow behavior at higher shear rates. Dynamic viscosity
of the dispersions with the solid loading 15 – 25 wt.%
treated by the cationic comb copolymers was very low
at 2 to 30 mPa·s. The minimal viscosity (2 – 3 mPa·s) was
characteristic for the dispersions treated by the cationic
comb copolymers with high density of the charged
groups (65 mol%) and medium length of PEO side chains
(22 repeating units of ethylene oxide). Concentration of
this cationic comb copolymer indispensable for the
reduction of dynamic viscosity of the concentrated
titania dispersions to the minimal values was about
1 mg/m2 (1.5 μmol/m2 of the charged groups on the sur-
face). The length of PEO side chains with 22 repeating
units is optimal because of sufficient steric barriers pre-
venting the nanoparticles approaching too close and
low interpenetration of the chains under applied shear
stress. 
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Figure 7: Rheological behavior of 15 wt.% (a) and 25 wt.% (b) titania nano-sized dispersions treated with the cationic comb co -
polymers p(PEOxMEMA:METAC)-Y differing in charge density (Y, mol% of METAC units) and the length of PEO side chains (x,
num ber of the repeating units of ethylene oxide) at the constant shear rate of 105 s-1. Concentration of the polymers is 2 mg/m2.
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