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was initially achieved by performing a Laplace trans-
form to obtain the shear modulus G(s) in terms of the
Laplace frequency and then using analytical continua-
tion on the basis that s = iw to determine G*(w) [5].

                                                           (1)

                                              (2)

Mason proposed an alternative approach for estimating
the required Fourier transform of the MSD algebraically
by using a power law expression to describe the change
in the local MSD with time at any given time point [6].
A benefit of this approach is that it does not require the
use of numerical transforms (and associated truncation
errors) or arbitrary functional forms im pli cit with the
Fourier transformation. Mason, highlighted the need to

1      INTRODUCTION

Microrheology techniques involve tracking the motion
of dispersed probe (or tracer) particles in a complex flu-
id, to extract local and bulk rheological properties of the
matrix. Analogous to mechanical rheo metry tech-
niques, a stress is applied to the system by motion of
the probe particle, and the deformation (or strain) is
measured through changes in the probe particle posi-
tion. Dynamic Light Scattering (DLS) Microrheology is
classified as a passive technique, whereby the colloidal
probe particles undergo thermal fluctuations in a sys-
tem at thermodynamic equilibrium. The Mean Square
Displacement (MSD) or áDr2(t)ñ of the probe particles
with time is followed by DLS, to enable linear viscoelas-
tic parameters for the complex fluid matrix to be
extracted [1 – 4]. In the implementation of microrheol-
ogy, the viscoelastic moduli of a sample from the mean
square displacement of embedded tracers is calculated
using a generalised form of the Stokes-Einstein equa-
tion (Equation 1) as outlined by Mason and Weitz [1].
This requires Fourier transformation of áDr2(t)ñ, which
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become trapped within the entanglement mesh (d > a),
particle diffusion is governed by the relaxation rate of
the polymer. Consequently one would expect good
agreement between microrheological and bulk rheo-
logical measurements if (d > a) providing there is min-
imal interaction between tracer and sample. 

4     CONCLUSIONS

DLS-microrheology can be used to extend rheological
measurements in to the high frequency domain using
an algebraic form of the generalised Stokes Einstein
equation. Since the mean square displacement is linear-
ly related to the creep compliance, the same approach
can also be applied to creep measurements on a rota-
tional rheometer, giving access to the low frequency
moduli in a fraction of the time required for oscillatory
testing. Furthermore, the quality of the conversion
process can be improved by fitting a Burgers model to
the time domain data prior to conversion thus minimiz-
ing errors associated with local differentiation, which is
fundamental to the conversion approach.
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Figure 5: Plots of η* (top) and G' as well as G" (bottom)
against angular frequency for Hengfloc 63026 in brine using
data generated from microrheology, creep, and oscillation
testing.

Figure 4: Plots of G' and G" against angular frequency using
data generated from microrheology, creep, and oscillation
testing.
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