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(MWD). While the Maxwell principle is a good educa-
tional tool to explain simple viscoelastic events, recently
developed computation programs use a new function,
the rheologically effective distribution (RED) that repre-
sents a more accurate and versatile indicator related to
the polymer structure and MWD.
         The starting point of the linear model is control the-
ory, which is widely used in various technology applica-
tions. However, according to our best knowledge, con-
trol theory has not been used previously in rheology.
Two variations of the model are presented: (1) an ana-
lytical model that is strictly based on fundamental prin-
ciples and (2) a modified version that represents a more
practical characteristic model. The viscoelastic data of
flows are partitioned in two RED components related to
the MWD as a source for further information outputs.
One of the first ideas for partitioning viscoelasticity
involved applying oscillatory shear rheometers to
obtain storage and loss moduli. Bersted [5] suggested
separating viscosity flow curves into Newtonian and
non-Newtonian components, based on molecule sizes
to obtain the MWD. This method involved cutting off

1      INTRODUCTION

Viscoelasticity is most commonly described using the
generalized Maxwell model (also called the Maxwell-
Wiechert model, first reported in 1889), which consists
of a parallel arrangement of spring-and-dashpot ele-
ments and the stress of the relaxation modulus to
include the relaxation-time concept. Numerous signifi-
cant works have used this phenomenological theory of
linear viscoelastic behaviour as a starting point [1 – 4].
The generalized Maxwell model is a presentation of the
relaxation modulus within the linear viscoelastic be -
haviour of a molten polymer. It is mathematically valid,
but it cannot be used to model higher strains or polymer
flows over wider ranges of the shear rate and tempera-
ture. Even though the original model was limited to
describing the relaxation modulus only at small strains
in the linear viscoelastic region, the relaxation-time
schema has been widened and used to model several
types of flow and calculate data in various practical
engineering and industrial polymerization applications,
such as in detecting the molecular-weight distribution

Linear Viscoelastic Model for Different Flows
Based on Control Theory

Tommi Borg1*, Esko J. Pääkkönen2

1TomCoat Oy, Koskisenkuja 11, 62500 Evijärvi, Finland
2Tampere University of Technology, Laboratory of Plastics and Elastomer Technology,

P.O. Box 589, 33101 Tampere, Finland

* Corresponding author: tommi.borg@tomcoat.com

Received: 12.5.2015, Final version: 17.9.2015

Abstract:
Traditional Maxwell-type models have limitations when applied to the flows of real polymers containing macromolecules and
complex microstructures. The main weakness of Maxwell models is the use of relaxation-time spectra that conducts to ill-
posed problems in integral functions, and shear-induced relaxation spectrum transformations may lead to non-linearity. In
contrast, control theory, which has apparently not been applied in rheology so far, enables modelling without knowledge of
relaxation times. This study used viscoelastic constitutive equations derived from control theory and a new polymer fingerprint,
which we call the rheologically effective distribution (RED). The study shows that a relaxation-time scheme is not essential to
describe viscoelasticity, and applying the RED to computational modelling provides many theoretical and practical benefits,
including giving higher accuracy. The proposed model is versatile and presents viscoelastic formulas for shear viscosity and
other types of flow. Furthermore, the new model provides explanations for the empirical Cox-Merz rule and a power law behav-
ior, the origin of which is frequently disputed in rheology. 

Key words:
Viscoelasticity, shear and dynamic viscosity, control theory, rheologically effective distribution (RED), empirical rules

| DOI: 10.3933/APPLRHEOL-25-64304 | WWW.APPLIEDRHEOLOGY.ORG

This is an extract of the complete reprint-pdf, available at the Applied Rheology website
http://www.appliedrheology.org

This is an extract of the complete reprint-pdf, available at the Applied Rheology website
http://www.appliedrheology.org

mailto:tommi.borg@tomcoat.com


cy of 10-6 1/s, where the analytical model shows a h*0
value that is too high. Pure control theory includes all
size chains of the MWD and the effects of the complete
RED at very low frequencies are too strong, while the
modified characteristic model derived using control
theory produces a more realistic fit. The quality of the
fit between the observed h*obs and predicted h*fit viscos-
ity values was quantified using a modified least-square
procedure that yielded the percentage root-mean-
square error (% RMSE). Least-square procedures are
widely used in numerical computations, and the differ-
ences obtained in the present study are shown in Figure
5b. The used viscosity LDPE data are curved and difficult
to fit to some models, which is why the %RMSE values
of other models are more than twofold higher than nor-
mal. The characteristic and analytical models actually
included the form of data for the RED function, which
partly explains why the observed error is small. More-
over, the characteristic viscosity fits might still be accu-
rate when extrapolated outside of the measurement
range over a wide scale of 10-6 1/s < w <106 1/s since they
are computed from the true MWD/RED. 

5      CONCLUSIONS

This study successfully derived viscoelastic constitutive
equations from control theory purely from a phenom-
enological standpoint, even though the model was
originally developed for detecting the MWD. Microlevel
structures and long-chain branches from viscoelastic
measurements are discussed elsewhere in a similar
way in terms of the temperature dependencies of poly-
mers [11]. We have demonstrated that applying control
theory to polymer viscoelasticity offers an alternative
to the relaxation-time schema, which until now has
been considered fundamental and exclusive in rheolo-
gy and viscoelasticity. Comparisons with the general-
ized Maxwell model show that the developed model
has a different theoretic background and procedure.
The linear relation to the RED was first developed from
viscosity measurements, and then accurate fits to G’
and G’’ moduli were obtained. Formulas for the relax-
ation modulus, shear viscosity and dynamic viscosity
were generated, and the results show that the shear
viscosity is not a simple viscometric function, instead
having similar characteristics to viscoelasticity, as for
the dynamic viscosity. This therefore expands the
usage of the term linear viscoelasticity, defined normal-
ly by time-strain separability, by including time-rate
separability to different types of flows [14]. The empir-
ical power-law model and Cox-Merz rule receive an
explanation by our model. The Cox-Merz rule holds
more often by controlled probability and is manipulat-

ed by the same MWD. While the applied method offers
more realistic and accurate models for rheology and
polymer science, further efforts are needed to increase
its use and acceptance within the rheology community.
Also, the reasons for differences between modelled G’
and  dynamic measurements at low frequencies need
to be clarified. 
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