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role in tree resistance to insects and diseases [6, 7]. It
functions as a generalized defense against any wound
agent that severs oleoresin ducts in the act of penetrat-
ing the outer bark of a pine tree. The oozing oleoresin
that results from wounding provides both chemical and
physical resistance properties [7 – 9]. Volatile compo-
nents (mostly monoterpenes) of pine oleoresin have
been extensively characterized and their role in tree
resistance, as well as their use as semiochemicals by in -
sects, is well documented [5 7, 10, 11]. Nevertheless, char-
acterization of the physical properties of pine oleoresins
(such as viscosity) has been challenging, primarily
because of the complex chemical nature of oleoresin
and structural instabilities that often develop during
handling and use. The most troublesome of these has
been the rapid crystallization of the oleoresin of many
species, which makes the use of established methods
problematic for characterizing physical properties such
as viscosity.

1      INTRODUCTION

Oleoresins produced by pine trees are complex and
dynamic mixtures of phytochemicals [1]. These com-
pounds have long been of commercial interest, having
been relied on since the earliest of times to waterproof
boat hulls and improve seaworthiness and durability of
accessories such as ropes [2]. Commercial uses served as
the genesis and namesake of the naval stores industry
which, in the southeastern region of the USA, evolved
to producing spirits of turpentine and raw chemicals
and remained economically important for about 150
years [3]. Pine oleoresin remains the largest stock vol-
ume of essential oils in nature and continues to be a sig-
nificant source for raw materials and products ranging
from turpentine to fatty acids and biofuels among other
diverse uses [1, 4, 5]. 
         In addition to its direct commercial value, pine ole-
oresin is of interest to forest ecologists because of its
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over the experimental temperature range of the TTS
experiment. The temperature dependence of the shift
factors can also be studied using the WLF (Williams-
Landel-Ferry) expression (Equation 7):

                                                          (7)

where c1 and c2 are the WLF parameters. Figure 15 shows
the temperature dependence of shift factors as embod-
ied in the WLF equation for the four pine oleoresin sam-
ples at the studied temperature range. It is evident from
Figure 15 that the experimental data are very well
described by the WLF equation as indicated by coeffi-
cients of determination ranging between 0.999 and 1
for the pine oleoresin samples studied. Based on the
obtained values of c1 and c2, shown in Table 6, apparent
activation energy Ea can be determined according to the
modified form of the WLF equation [28]: 

                                                             (8)

Table 6 summarizes the obtained apparent activation
energy of pine oleoresin samples, as estimated from
Equation 8. It should be pointed out that the Arrhenius
model previously discussed describes temperature de -
pen dence of a material’s viscosity in terms of a constant
activation energy (Ea), whereas the WLF model de -
scribes an apparent activation energy Ea [28]. As can be
seen in Table 6, for all samples the estimated apparent
activation energy values increase with increasing tem-

perature, thus indicating temperature dependence for
aT in the experimental temperature range. The temper-
ature dependence of shift factors at the different exper-
imental temperatures could also reflect the effect of
temperature on the viscoelastic properties of the oleo-
resin samples, thereby confirming their temperature
sensitivity already indicated by application of the
Arrhenius model. The successful application of the TTS
principle and the WLF model to experimental data col-
lected from pine oleoresins, despite the complex nature
and composition (volatile and nonvolatile terpenes) of
these fluids, is a novel and noteworthy finding.

4     CONCLUSION

Rheological evaluation of oleoresins collected from four
different southern pine species confirmed that these
compounds are structured fluids that exhibit viscoelas-
tic behavior under small amplitude oscillatory shear
deformation and flow conditions. To our knowledge,
this is an original report of such behavior for pine oleo-
resins. The results described here suggest that species-
dependent flow behaviors exist for the four pine species
investigated. For example, oleoresin collected from
slash pine exhibited Newtonian flow behavior whereas
the longleaf and shortleaf pine oleoresin samples
showed pseudoplastic behavior, but oleoresin sampled
from loblolly pine behaved as Bingham fluid, requiring
a yield stress of about 1.980 Pa to be exceeded before
proceeding to flow. The viscosity of the studied oleo-
resins showed temperature dependence properties that
were adequately described by the Arrhenius equation.
The calculated flow activation energies of all the sam-
ples ranged from 153.5 kJ/mol to 219.7 kJ/mol; the vis-
cosity of the fresh slash pine oleoresin sample was less
sensitive to temperature changes compared to that of
the fresh shortleaf and longleaf pine samples, which
were the most affected by temperature changes. This
trend was reversed after formation of macroscopic
milky crystals in the oleoresin samples; viscosity of the
slash pine oleoresin sample became the most sensitive
to temperature changes (199.28-202.19 kJ/mol), where-
as viscosity of the longleaf pine sample became the least
temperature dependent (174.17-178.08 kJ/mol). Never-
theless, viscoelastic properties of the macro-crystallized
pine oleoresin samples re mained temperature-depen-
dent and reversible. In addition, the TTS principle (or WLF
equation) was successfully applied to data collected
from oleoresin samples, and the results produced indi-
cate that pine oleoresin displays behavior typical for a
thermorheologically simple system over the tempera-
ture range of 25 – 65 °C, despite the complex composi-
tion of these compounds.
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Table 6: WLF model parameters estimated for the tested pine
oleoresin samples.
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         The two types solid-liquid phase transitions ob -
served for the four pine oleoresin species tested are com-
patible with different defensive mechanisms exhibited
by southern pines to resist attack from its most impor-
tant pest, the southern pine beetle. These include a
chemical defense mechanism governed by temperature
dependent physical properties of oleoresin (i.e. flow, vis-
cosity, solid-liquid transitions) and a physical defensive
mechanism, based on wound sealing, that involves for-
mation of visual crystals apparently resulting from mo -
noterpene evaporation. To our knowledge, the viscoelas-
tic study described here is the first of its kind, leading us
to conclude that the results described will provide a basis
for a better understanding of the deformation and flow
properties of pine oleoresins, and of their role in tree
defense against attacks by insects and diseases.
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