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flowing state where the particles are ordered into layers
to a disordered state where this ordering is absent. This
mechanism is generally called an order-disorder tran-
sition. Bender and Wagner noted that although order-
disorder transitions may accompany the shear thicken-
ing transition, the underlying order-disorder transition
is neither necessary nor sufficient to trigger shear thick-
ening [13]. They have shown that reversible shear thick-
ening results from the formation of hydroclusters, or
transient stress bearing particle aggregates that form
as a consequence of short range hydrodynamic lubrica-
tion forces overcoming the interparticle repulsive
forces during flow. Percolation of these hydroclusters
with increasing shear results in the formation of larger
aggregates that can jam the flow, leading to discontin-
uous shear thickening behavior. The formation of jam-
ming clusters bound together by hydrodynamic lubri-
cation forces, often denoted by the term “hydroclus-
ters” [10, 11]. Rheo-optical experiments [12, 13], stress-
jump measurements [14, 15], neutron scattering, and
Brownian simulation [16 – 19] were all used to prove the
validity of such models.

1      INTRODUCTION

Shear thickening behavior as a significant continuous or
discontinuous steep increase in viscosity is a common
phenomenon existing in concentrated colloidal suspen-
sions when they are subjected to applying stress [1 – 3].
Shear thickening behavior was studied for its damages
to processing equipments and dramatic changes in sus-
pension microstructure such as cement systems and con-
crete systems [4 – 6]. After all, such rheological behavior
was found and investigated in various suspensions sys-
tems. It has a great potential for use in producing ski boot
cushioning, shock absorber fillings and body armors due
to their specific ability to absorb a large amount of energy
once suffering from a high velocity projectile [7, 8].
         The reasons for shear-thickening was explored
deeply and a series of models have been developed.
Hoffman used a combination of rheology with in situ
light diffraction to elucidate microstructural changes
that occur during shear-thickening [9]. He concluded
that the incipience of shear-thickening at a critical
shear rate corresponds to a transition from an easy
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which is different from the previous researches focus-
ing on the sequential and steady shear sweep. The fol-
lowed results were gotten.
         Firstly, keeping shearing the suspensions at fixed
rate for a certain time, the viscosity of suspensions
shows a rudely increase as a “pulse”, after that, the
obvious discrepancy of viscosity change appears in dif-
ferent rate interval. When the shear rate is low, the vis-
cosity remains unchanged, indicating the formation of
balance. Relatively, the viscosity decreases gradually to
some specific degree under the high shear rate, which
is dependent on the rate of shear. This phenomenon
was also observed in continuous stress and oscillatory
shear with the absent of “pulse”. It could be concluded
that the same, unchanged stimulus strength under
both steady and dynamic oscillatory shear is hard to
keep the suspensions at the same viscosity, especially
under the high rate of shear, the particles in suspen-
sions should happen rearrange and reach a new bal-
ance with the extension of time. Secondly, the shear
history affects the rheological behavior of suspensions
under the followed shear significantly. When the pre-
vious shear rate is low, the viscosity in the followed
shear is higher than that with the higher previous shear
rate. The lower previous shear is similar as a “pre-shear”
process, the particles aggregate in a slight degree,
which is conducive to the next greater aggregation.
Inversely, the previous high shear rate is similar as a
“overshooting” process, the decrease of shear rate
(stress) should lead to the rearrangement of particles
in suspensions. Thirdly, the relaxation process of sus-
pensions from aggregation status needs certain time,
which is dependent on the initial viscosity and the vol-
ume fraction of suspensions. The relaxation time
should be prolonged gradually with the increase of ini-
tial viscosity significantly and reach a “platform” when
the initial viscosity reaches a special value. With the
same initial viscosity, the suspensions with higher vol-
ume fraction need longer time for relaxation due to the
longer distance from the aggregation status to the bal-
ance status.
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Figure 11: The relaxation time as a function of start viscosity.
The volume fraction of suspensions is the 47, 49, and 51%.

Figure 10: The relaxation time as a function of start viscosity.
The volume fraction of suspensions is 51%.
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