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For a ‘parallel plate’ system the linear velocity increases
with radius, but since the gap remains constant the shear
rate then varies across the radius of the plate [1] as illus-
trated in Figure 1. This does not matter too much for New-
tonian liquids since both shear stress and shear rate are
linearly related, and hence viscosity is constant, however,
for non-Newtonian liquids the shear stress has a non-lin-
ear dependence and the viscosity will thus vary at differ-
ent radial locations. This can be largely corrected for by
applying a non-linear correction based on the local pow-
er law index n [1] or by calculating the viscosity at ¾ of
the plate radius instead of the edge, since the shear rate
for non-Newtonian and Newtonian materials have com-
parable values close to this point [2]. The working equa-
tions for parallel plates are given below (Equations 3 and
4) based on shear rate calculation at the plate edge and
with non-linear corrections applied for shear stress. To
implement the single point correction, one just assumes
a Newtonian response (n = 1) with the resultant values
or equations for g· R and s multiplied by a factor of ¾.

                                                                                (3)

1      INTRODUCTION

To measure shear viscosity accurately using a rotational
rheometer it is important that the flow field is homoge-
nous and laminar and the shear rate is well defined. For
this to be the case the shear gap needs to be small
(based on the sample being measured) and linearly
dependent on the velocity at the shearing surface. Such
conditions are met in the case of ‘cone and plate’ mea-
suring systems, so long as the angle between the plate
and cone is small, because any increase in linear velocity
with cone radius correlates with an equivalent increase
in shear gap. The working equations for cone and plate
are shown below (Equations 1 and 2) with ω the angular
velocity, θ the cone angle, τ the torque, and R the radius
of the cone.

                                                                                    (1)

                                                                              (2)
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fluid, so again similar values. Equilibrium flow curves
for the two non-Newtonian fluids measured with Mixer
B and the cone and plate geometry are shown in Figure
5. As with Mixer A the agreement between the two con-
figurations is very good particularly for the body lotion.
For the body wash product the same discrepancy in the
transition region observed with Mixer A is observed
which is again attributed to the complex and variable
flow field in the vicinity of the mixer.
         This study clearly demonstrates the feasibility of
the approach taken to estimate stress and strain con-
stant for non-standard measuring systems and one that
is relatively quick and easy to perform. As stated in the
introductory section, there are clearly benefits of being
able to generate comparable rheological data to that
obtained with a standard geometry configuration using
non-standard measuring systems or mixers and/or non-
standard vessels. This may be to replicate mixing, for
keeping a sample dispersed during a measurement or
to measure some rheological property that would be dif-
ficult or even impossible with a standard measurement
configuration. In theory it should also be possible to gen-
erate C1 and C2 constants for larger scale mixing vessels
using this approach if mixer torques and mixing speeds
are known. If the power input is linearly dependent on
torque then it may also be possible to replace the torque
with power input in Equation 5.

4     CONCLUSION

A simple and novel empirical method for determining
strain/strain rate C1and stress C2constants for non-stan -
dard measuring systems on a rotational rheometer is
proposed. This method uses relative torque measure-
ments made with a Newtonian and non-Newtonian
material and their corresponding power law fitting
parameters to determine C1 and C2 using a non-linear
regression analysis. Equilibrium flow curves generated
for two non-Newtonian fluids using two non-standard
mixing geometries showed very good agreement with
data generated using a standard cone and plate config-
uration, therefore, validating the approach.
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Figure 4: Flow curves measured with Mixer A and a cone-
plate geometry on a body lotion (above) and body wash
(below).

Figure 5: Flow curves measured with Mixer B and a cone-
plate geometry on a body lotion (above) and body wash
(below).
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