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However, the colloidal stability can be altered by pertur-
bations and/or under specific processing conditions. The
stability and/or sedimentation of colloidal particles is
generally determined by a balance of Brownian forces,
gravity, electrical, thermal and magnetic fields. The
Brownian motion causes random particle orientation in
dilute systems without inter-particle interactions, but
orientation may happen at high Péclet numbers. The
particle orientation and rotation depend on the particle
shape and may alter flow characteristics, because of
shear thinning effects reducing the viscosity and caus-
ing non-linear rheological properties [4]. In addition, the
non-linear effects are influenced by wall slip as interfa-
cial slippage [5]: The shear rate at the boundary is con-
sequently higher than in the core of the medium and the
viscosity is artificially increased [6]. The effects of wall
slip and related flow instabilities have been systemati-
cally overcome by roughening the wall of the testing
geometry, although it could not be fully prevented [7].
The contributions of wall slip can be understood by
changing the gap distance, as it affects flocculation at
high shear rates [3]. In general, a gradual increase in

1      INTRODUCTION

Aqueous dispersions of polymer nanoparticles have
demonstrated favorable features as sizing or coating
agents for papers, cardboard and textiles controlling
specific properties such as permeability, wettability, or
printability [1]. The availability of nanoparticles in aque-
ous dispersion with high solid content is encouraged as
volatile organic solvents should be avoided because of
processing incompatibilities, cost and ecological con-
cerns [2]. In order to extend the application range and
enhance the processing of such nanoparticles, better
understanding of the rheological characteristics and
colloidal stability is needed.
         The rheological characteristics of nanoparticles in
aqueous medium relate to the behavior of complex flu-
ids [3]. Suspensions are generally classified as heteroge-
neous mixtures of relatively large particles that settle
down over time under the influence of gravity, if it
remains undisturbed. Colloidal dispersions, on the con-
trary, are equally divided suspensions with smaller par-
ticles that do not aggregate or separate upon standing.
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Abstract:
Organic nanoparticles of poly(styrene-co-maleimide) or SMI were synthesized in aqueous dispersion with a maximum con-
centration of 35 wt.% and are favorably applied in industrial coating processes. In order to evaluate the further processability
and flow behavior of these nanoparticle dispersions, general rheological characterization under creep, oscillatory and rota-
tional testing was done by applying various shear stresses, shear rates and frequencies on an air-bearing cylindrical rheometer.
Creep tests at different stresses show that the nanoparticle dispersions behave like a viscous material. The crossover of G’ and
G” according to oscillatory experiments also demonstrates a transition to viscoelastic behavior at high frequency. The sensi-
tivity of shear-viscosity behavior to concentration and temperature of the dispersions has been evaluated. In parallel, the influ-
ences of gap size, repeatability and water evaporation have been statistically evaluated and could be successfully controlled.
By comparing oscillatory and rotational rheometry data, flow curves under low shear rates were reconstructed.
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100 rad/s. Under stable flow conditions, dynamic for-
mation and desintegration of some clusters and specif-
ic flow patterns were preliminary observed.
        The shear-viscosity behavior of the nanoparticle
dispersions is very sensitive to concentration and tem-
perature: Therefore, even small amount of water
evaporation affects to the rheological behavior of dis-
persion. In this regard, water evaporation has been
successfully controlled during ascending and descen -
ding testing, where different viscosity trends have
been duplicated at ascending/descending shear
stresses or shear rates and may be most likely related
to the intrinsic dispersion nature and two-phase
behavior. The effects of gap size (on fresh samples)
and reproducibility (on single samples loaded for dif-
ferent number of cycles) were extensively evaluated
and present low coefficients of variation. Comparing
oscillatory and rotational rheometry data provides
viscosity shows some differences under low shear rate
regimes, where a two-phase behavior may occur.
Finally, the stability of the dispersions after high-shear
rate experiments and over a longer time is illustrated
by only small variations in nanoparticle size (between
100 to 120 nm diameter) that are mostly due to small
changes in hydrodynamic radius during processing
and storage.
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