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1 INTRODUCTION

Many rheometric methods have been developed to
probe the rheological behavior of complex fluids and
soft solids, including unidirectional shear-stress sweeps,
creep and relaxation tests, and small-amplitude oscilla-
tory shear (SAOS), to name a few [1]. Each of these meth-
ods were typically developed to probe just one or two
defined rheological properties, e.g., yield stress, loss and
storage moduli, and shear-rate-dependent viscosity
prole. Recently, large-amplitude oscillatory shear (LAOS)
is receiving considerable attention because it has the
potential for probing several rheological properties of a
material at once with a relatively small set of experi-
ments [2, 3]. In addition, LAOS may alleviate some of the
problems of fracture and ejection that occur in prob-
lematic materials when exposed to the unbounded

deformations of steady simple shear (SSS) [4]. Howev-
er, the analysis of the complex, nonlinear oscillatory pro-
files that result from LAOS is not straightforward, and a
few differing approaches have been proposed for
obtaining material functions from LAOS data without
first presuming a constitutive model [2, 5 – 10]. This body
of work has advanced the experimental methodology,
qualitative interpretation, and quantitative analysis of
LAOS considerably. Nonetheless, several issues remain,
including the different behaviors that are observed
between strain- and stress-controlled measurements
and be tween uniform- and nonuniform-shear visco-
metric geo me tries (e.g., cone-and-plate vs. parallel-
plate). These differences pose significant challenges to
the leading quantitative analysis methods of analyzing
LAOS rheology data, which so far have been limited to
the uniform-shear case.
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The Fourier coefficients for the conventional signal, f(t),
where t = t̂ + t0, can then be determined by

(19)

The effect of instrument inertia, I, may be accounted for
by subtracting the torque due to the inertia from the
raw torque signal:

(20)

In order to evaluate Equation 20, it is necessary to
obtain the second derivative of the displacement sig-
nal. We found it numerically favorable to compute the
second derivative of the Fourier series representation
of displace- ment, specifically,

(21)

Again,it is necessary to truncate the series to reduce
noise. In fact, high-frequency signal variation, whether
real or artifact, is magnified by differentiation [33]. This
is exhibited in the Fourier representation (Equation 21)
by the coefficients scaling with (nw)2. Because we are
interested in the inertial contribution from the primary
oscillatory displacement signal, and not from the high-
frequency oscillations, we truncate the series based on
the values of cqn. By subsequently evaluating Equation
21 at the same sampling time points as for MR, it was
straightforward to obtain the sample torque from Equa-
tion 20. We chose to obtain the sample torque from the
raw torque before smoothing the torque.

Examples of (phase-shifted) noisy displacement
and torque signals obtained from a displacement-con-
trolled LAOS experiment are shown in Figures 12a and
12b. Normalized Fourier coefficients for the displace-
ment and sample torque signals are shown in Figure
12c. Although we did not attempt to probe the source
of the persistent broad-band noise, we suspect it is due
to the limitations of the displacement feedback-control
system.By dropping Fourier series terms beyond 10
resulted in the smoothed reconstructed signals shown
in Figures 12a – b.

For a torque-controlled measurement, the instru-
ment implements a sinusoidal raw torque and measures
the displacement signal. However, after accounting for
the instrument inertia, the sample torque may not be
sinusoidal, as illustrated in Figure 13. Dimitriou et al. [5]
provided analysis for determining an upper bound on
stress amplitude so that inertia was negligible, main-
taining a sinusoidal sample torque. In the current work,
a truncated Fourier series was used to represent the
imposed sample torque when performing model simu-
lations of torque-controlled LAOS rheometry. Hence, per-
fectly sinusoidal imposed signals were not necessary for
the constitutive modeling approach used here.
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Figure 13: Inertial correction for torque-controlled parallel-plate measurement of Carbopol, G1 = 67.9 and Bi-1 = 2.7. (a) raw,
sample, and reconstructed torque signals (sample and reconstructed signals overlap); (b) normalized magnitude of the sample
torque Fourier coefficients.
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