
1 INTRODUCTION

The parallel-plate geometry is widely used in rheome-
try for a great variety of materials, such as polymer
melts, suspensions, dispersions and emulsions. One of
its advantages over the cone and plate or the concen-
tric cylinder geometries is the ease of varying the gap,
which is crucial in the case of systems containing a dis-
perse phase such as particles, droplets or bubbles. The
gap must be much larger than the particle size (at least
ten times), otherwise the continuous medium hypoth-
esis always adopted in the rheometer theories is vio-
lated. Thus, for multiphase systems, this requirement
rules out the employment of the cone-and-plate geom-
etry and restricts the range of applications of narrow-
gap concentric cylinders. Another advantage of the par-
allel-plate geometry is a wider range of shear rate,
which can be changed by varying the plate diameter,
gap, and angular velocity. In addition, when measuring
viscoplastic materials it is recommended that all sur-
faces in contact with the sample be roughened, so as

to avoid the occurrence of apparent wall slip [1, 2]. Sur-
face roughening, either by covering it with grit sand-
paper, by sandblasting or by profiling (e.g. cross-
hatched surfaces), is easily done with parallel plates.

However, in contrast to the cone-and-plate or the
narrow-gap concentric cylinder geometries – for which
the deformation gand shear rateg· are uniform or near-
ly uniform throughout the sample – in the case of the
parallel-plate geometry both of these kinematic quan-
tities vary linearly with the radial coordinate r:

(1)

where H is the gap between the plates, q is the angular
displacement, and W = q̇ is the angular velocity. Flow
inhomogeneity is inconsequential1 when the shear
stress s also varies linearly with r (e.g. for Newtonian
fluids, s = μġ , and Hookean solids, s = Gg). In this case
we can write the shear stress in the form s = Cr, where
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cept is directly related to the fact that the material
microstructure resists to higher shear stresses if they are
applied cyclically rather than steadily (i.e. at a fixed val-
ue) because the microstructure breakup needs contin-
uous exposure to a stress above the yield stress during
some minimum length of time. The higher the fre-
quency, the higher the maximum stress to which it
resists. As the frequency tends to zero, this maximum
shear stress approaches the yield stress. The effective
stress at the bend conditions is equal to the yield stress
for all frequencies, while the applied stress amplitude
at the bend increases with the frequency. These trends
are clearly illustrated in Figure 11, and imply that the
shear stress correction due to flow inhomogeneity is
only relevant and is certainly quite important for LAOS
tests, which are typically performed at low frequencies.

4 CONCLUDING REMARKS

In this paper we present an experimental study of the
effect of flow inhomogeneity on the shear stress in rhe-
ological tests that employ the parallel-plate geometry,
with especial emphasis on oscillatory flows. To this end,
we performed different kinds of tests using both a shear-
thinning, viscoelastic liquid and an elasto-visco plastic
gel. The general conditions under which the need for a
correction arises were discussed in detail. It was illus-
trated that the correction needed on the shear stress may
be as high as 49%, depending on the material, stress
range, and type of test. It is shown that the parallel-plate
geometry can be used without corrections to perform
creep tests when the sole objective is to measure the
yield stress. A correction for the stress amplitude in oscil-
latory tests is proposed, and some illustrative results
showed that it accurately corrects the data for the flow
inhomogeneity of the parallel-plate geometry, support-
ing the adoption of the simplifying assumption that the
local stresses are all in phase with the torque. In contrast
to other corrections found in the literature, the one pro-
posed here does not depend on an assumed constitutive

model. It was also illustrated that the stress correction is
not needed in SAOS experiments, but is especially impor-
tant in LAOS tests.
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FOOTNOTE
1 Except that the shear-rate gradient may induce shear dis-
persion, causing the dispersed phase to migrate radially
towards the center. This effect may cause important mea-
surement errors, depending on the characteristics of the sys-
tem and of the test itself.
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Figure 10: Strain sweep results for the hair gel: Stress ampli-
tude versus strain amplitude.

Figure 11: Strain sweep tests with hair gel at different frequen-
cies: Torque amplitude as a function of the shear rate ampli-
tude. The horizontal red dotted line indicates the torque that
corresponds to the yield stress s =62.5 Pa.
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