
1 INTRODUCTION

Suspension emulsions, or suspoemulsions, are mixtures
of two fluids where the dispersed phase is a suspension
of solid particles in a suspending medium. Suspoemul-
sions are industrially relevant as they are used by the
agricultural, personal care, and pharmaceutical indus-
tries [1, 2]. Many of these formulations use high concen-
tration colloidal suspensions so it is important to under-
stand how mixtures of Newtonian and non-Newtonian
fluids behave under flow. The goal of this work is to ex -
amine the rheological behavior of a novel suspoemul-
sion comprised of a Newtonian poly(dimethyl siloxane)
(PDMS) fluid melt blended with a non-Newtonian shear
thickening fluid (STF). This is achieved by performing
stress controlled rheological measurements simultane-
ous with measurements of the blend microstructure dur-
ing shear using a novel rheo-microscope. The use of
simultaneous microstructure and rheology measure-
ments is necessary as the properties of the STF suspo-
emulsion depend strongly on the dispersion morpholo-

gy, which is in turn greatly affected by preparation and
flow history. This study seeks to qualitatively and quan-
titatively describe these relationships to develop a bet-
ter understanding of the fundamental physics required
to effectively formulate complex fluid suspoemulsions
for targeted applications.

The shear thickening response of colloidal disper-
sions has been a topic of considerable recent interest in
both industrial and academic research. The shear thick-
ening behavior of concentrated particle suspensions
and the underlying microstructural mechanisms for the
shear thickening have been studied extensively using
simulations, [3 – 5] optical techniques, [6, 7] and neu-
tron scattering techniques, [8 – 14] as well as rheo-
microscopy [15]. The history of and underlying mecha-
nisms for shear thickening in concentrated suspensions
has been recently reviewed [16, 17]. The viscosity of
shear thickening fluids (STFs) do not monotonically
increase with shear stress or shear rate, as the name
would superficially suggest. Rather, the viscosity of a
STF decreases throughout the low shear stress regime
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tonian homopolymer can exhibit significant bulk shear
thickening at volume fractions as low as fSTF = 0.3,
whereas suspoemulsions made from the weakly con-
tinuous shear thickening fluid do not show significant
shear thickening. Thus, the presence of a strong shear
thickening response in the STF is necessary for observed
a shear thickening response in the suspoemulsion. 

For the suspoemulsion blended with the discontin-
uously shear thickening fluid, below fSTF = 0.3 three
regimes are observed in the rheology: a viscosity plateau
in the limit of low shear stress, a shear thinning regime,
and a shear thickening regime at stresses above the crit-
ical shear stress of the pure STF. The rheo-microscopy
shows that for all STF suspoemulsions tested, coales-
cence is significant system wide during the shear-thin-
ning regime. At low to moderate STF content, a thread-
like phase was observed under flow near the viscosity
minimum. These threads break-up in to droplets in the
thickening regime with increasing applied shear stress
increases. The implication of this is that a well dispersed
droplet morphology can be restored for these suspo-
emulsions by imposing a shear stress sufficiently high so
as to be in the shear thickening regime of the STF dis-
persed phase (on the order of 1000 Pa for the suspo-
emulsions discussed here). For blends with fSTF > 0.4
behavior closer to that of the pure STF is observed at all
shear rates. 

The limited modeling analysis shows that simple,
phenomenological viscosity models can qualitatively
describe the behavior of the shear thickening suspo-
emulsion. The modified polymer emulsions model cap-
tures the qualitative behavior for the dilute suspoemul-
sions, providing a reasonable prediction of the stress nec-
essary to achieve shear thickening in the suspoemulsion.
For STF loadings above fSTF= 0.3 volume fraction, the flu-
idity-addivity model describes the qualitative features of
the viscosity vs. shear stress curve between 0.1 and 1000
Pa. However, this model incorrectly predicts a viscosity
plateau below 0.1 Pa for suspoemulsions with fSTF = 0.4
to 0.7 STF as it does not account for the co-continuous
microstructure observed in the rheo-microscope. These
approaches are useful for guiding formulations of novel
STF suspoemulsions for specific applications.
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