
1 INTRODUCTION

Gel structures may exhibit very different rheological
behaviour depending on the mechanism of gelation. For
example, bridging structures between particles may
undergo viscoelastic response to strain in respect to the
flocculating mechanism [1, 2]. In some gels, for example
those based on mineral nanoclay particles, the gelation
may relate to a direct swelling of the particles due to
intercalate exchange and exfoliation [3, 4]. Polymer gels,
on the other hand develop a structural integrity due to
liquid uptake potential and diffusion between the con-
stituent polymer molecules in the matrix [5]. An exam-
ple material which is undergoing intensive research cur-
rently is nanocellulose and nanofibrillar cellulose, de -
rived from the refining and/or oxidation of tree fibres
[6–9]. This highly charged hydrophilic material behaves
similarly to a superabsorbing polymer, in that the nano -

particulate matter itself does not swell, but the attrac-
tion to water results in a high osmotic pressure leading
to bound and interstitial water molecules clustered
within a swollen gel [10, 11]. This behaviour, when intro-
duced in mixes with other suspension particles, includ-
ing, for example, micro and macroscopic cellulose fibres
and inert pigment fillers, results in challenging rheo-
logical properties when considered for applications in a
wide range of manufacturing processes, ranging from
paper and board manufacture, as well as composites, to
food, pharmaceuticals and cosmetics [12–16]. Such ma -
te rials form phase-separable gel structures, which may
incorporate inhomogeneities within the ensemble ma -
trix when incorporated in high consistency suspensions,
and so constitute complex fluids, whose rheological
response can lead to unpredictable time-dependent
variations under shear in simple parallel plate and cylin-
drical rotational geometries [17–19].
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Abstract:
Phase-separable particulate-containing gel structures constitute complex fluids. In many cases they may incorporate com-
ponent concentration inhomogeneities within the ensemble matrix. When formulated into high consistency suspensions,
these can lead to unpredictable time-dependent variations in rheological response, particularly under shear in simple paral-
lel plate and cylindrical rotational geometries. Smoothing function algorithms are primarily designed to cope with random
noise. In the case studied here, namely nanocellulose-based high consistency aqueous suspensions, the system is not ran-
domised but based on a series of parallel and serial spatial and time related mechanisms. These include: phase separation,
wall slip, stress relaxation, breakdown of elastic structure and inhomogeneous time-dependent and induced structure re-
build. When vacuum dewatering is applied to such a suspension while under shear, all these effects are accompanied by the
development of an uneven solid content gradient within the sample, which further adds to transitional phenomena in the
recorded rheological data due to spatial and temporal differences in yield stress distribution. Although these phenomena are
strictly speaking not noise, it is nevertheless necessary to apply relevant data smoothing in order to extract apparent/process
viscosity parameters in respect to averaging across the structural ensemble. The control parameters in the measurement of
the rheological properties, to which smoothing is applied, are focused on parallel plate gap, surface geometry, shear rate, oscil-
lation frequency and strain variation, and relaxation time between successive applications of strain. The smoothing algorithm
follows the Tikhonov regularisation procedure.
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