
1 INTRODUCTION

In recent years, strain controlled large amplitude oscil-
latory shear (LAOS) has been developed into a power-
ful tool to investigate non-linear material behavior.
Therefore, a sinusoidal strain is imposed and the stress
response is measured. The latter can be decomposed by
a harmonic analysis, the Fourier Transform (FT) rheolo-
gy [1 – 11], into the storage modulus G’�, the loss modu-
lus G�’’ as well as the higher harmonics ak and bk. These
are material functions which tell about the material
behavior and help drawing conclusions about model
assumptions. Based on these, one can create a materi-
al model and is able to do further simulations. The stor-
age and loss modulus can be also used for material clas-
sification. For example Hyun et al. [10] presented a clas-
sification depending on the LAOS behavior of G’�(ĝ) and
G’�’(ĝ) which consists of four types. Another way to pre-
sent the characteristic of materials is the visualisation
of their stress responses. Here it has become estab-
lished to plot the Lissajous curves as well as the Pipkin

diagrams, the so called rheological fingerprint [12 – 14].
Furthermore, sinusoidal loading is an useful tool to
investigate the rate-dependency g

·
∼ ĝwwithin a limit-

ed range of strain -ĝ ≤ g ≤ ĝ by varying the angular fre-
quency w [3, 10, 11, 15]. Thus, the critical straingcr, which
describes the limit of linearity to separate the range of
small amplitude oscillatory shear (SAOS) from LAOS,
can be determined within a high sensitivity investiga-
tion [8, 16]. After passing the limit of linearity the Fouri-
er analysed stress response contains higher harmonics.
Often the lack of physical interpretation of these high-
er harmonics is emphasised [17 – 20]. For improvement,
new approaches have been suggested like (1) the Fouri-
er Chebyshev analysis of Ewoldt [19] applying the stress
decomposition of Cho [18], (2) the method of Klein [21]
using sine, square, triangular and sawtooth waveforms
as four fundamental basis functions, and (3) the se -
quence of physical processes technique of Rogers [15].
Further details as well as the state of the art are sum-
marised elsewhere [11, 20, 22 – 24] making such a dis-
cussion redundant at this place.
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Prandtl element three characteristic points were iden-
tified by the storage and loss modulus so that the elas-
tic modulus G and the yield stress ty can be determined
for example from the yield point: the critical strain
(Equation 24) and the preyield-plateau of the storage
modulus (Equation 33). The parameters also can be
identified by the maximum point of the loss modulus
according to Equation 39. Characteristic points were
also found in higher harmonics. Thus the root of ap.k,odd
(Equation 45) and each maximum MAX{bp.k,odd} (Equa-
tion 50) can be used in addition to calculate G and ty. In
principle, there is only one point that is relevant for the
Prandtl element to identify its material parameters.
However, to determine material parameters of soft
matter whose LAOS behavior can partially modelled by
a Prandtl element the knowledge of more characteris-
tic points is useful. Furthermore, it was observed that
the critical strain does not have to coincide with the
crossover G’�(ĝ) = G�’’(ĝ) in any case. In case of the Prandtl
element the beginning of the postyield results a priori
by the constitutive equations. It happens at the critical
strain which occurs at the increasing of the loss modu-
lus and the decreasing of the storage modulus. This
shows the need to be careful about conclusions that are
drawn a posteriori about material systems by experi-
mental analysis methods. Beside this, it was proved
analytically that the LAOS stress response of yield stress
fluids does not include even harmonics imperatively as
it is sometimes considered. Even harmonics vanish in
case of the Prandtl element because its stress response
fulfil Equation 9. Another presentation of the LAOS
behavior of the Prandtl element, its rheological finger-
print, was given by the Lissajous plots and the Pipkin
diagrams. They were shown at the end of Section 3.2.
Depending on ty /(Gĝ), the Prandtl element behave
either in Mode 1 or Mode 2. Since they differ significantly
from each other, it became clear that a rheological ele-
ment does not necessarily generate only one charac-
teristic first and second Lissajous plot. In general, it may
has several typical Lissajous plots. Both modes have in
common that the preyield and postyield parts are sep-
arated by sharp corners similarly to the storage and loss
modulus. Latter also show a sharp transition from the
preyield regime to the postyield at the critical strain
because the constitutive equations of the Prandtl ele-
ment contain a yield function and a yield condition. The
sharp transition is expressed by the sudden increase of
G�’’(ĝ) and the decrease of G’�(ĝ). Thus, independent from
the fact that the storage and loss modulus are quanti-
ties which integrate the signal over the period accord-
ing to Equations 5 and 6, they are able to detect the
yielding if an amplitude sweep is considered.
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