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1 INTRODUCTION

Atherosclerosis is a cardiovascular disease that is pri-
marily related to the effective transport of low-density
lipoproteins (LDLs, e.g. cholesterol) across the walls of
the main arteries. The localization of atherosclerosis is
highly dependent on hemodynamic and biomechanical
factors, such as wall shear stress and rheological prop-
erties of blood [1, 2]. These parameters are also influ-
enced by complex configurations and the orientation
of blood vessels in the human arterial system. For exam-
ple, wall shear stress may vary if the cross section of the
blood vessel experiences a sudden change or if tapered
or curved segments appear [3–5]. These situations can
be observed in large arteries such as aorta with branch-
es, taper, twist, and curvature [6]. Experimental stud-
ies have been conducted to determine the velocity and
blood flow patterns in the aorta by using particle image
velocimetry techniques [7–9]. To avoid experimental
complexities and high cost, numerical simulations have
become an effective alternative to such measurements

of fluid dynamic parameters. Many researchers have
adopted this approach while simulating the parame-
ters for aortic arteries with rigid and impermeable walls
[10–12]. However, in actual physical situations, the
walls of the vessels are deformable and permeable to
the solutes mixed in the blood.

Another important factor in the development of
atherosclerosis is the flow-dependent response of the
vessel wall structures. Studies have shown that during
the circulation of the blood in the aorta, a high blood
pressure may induce a pathological state commonly
known as aortic dissection. A tear may develop in the
intimal layer of the wall and may allow the blood to
enter the tear site and influence the other layers as well
[13, 14]. Therefore, evaluating the stress distribution in
the wall of the aorta is important to predict any rela-
tionship between fluid dynamics and structural me -
chan ics. Simulation studies that use the fluid structure
interaction (FSI) approach for this evaluation are avail-
able [15, 16]. However, in all of these studies, non-phys-
iological boundary conditions were used and the veloc-
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and outlet boundary conditions at a high Reynolds
number. The structural properties of the aortic walls
were studied at peak systolic and diastolic velocities
and peak pressure by evaluating the average wall shear
stress, von-Mises stress, and wall deformation at the
fluid solid interface boundary of the model. In addition,
these parameters were also studied against Dean num-
ber Dn, where the importance of secondary flows were
considered especially in the curved region of aortic arch.

The results were compared with a non-porous
model, and a significant difference was observed,
which shows that the porous model, as the approxi-
mation of the actual physical model, is more prone to
hypertension and rupture. The outer aortic arch region
similarly experienced the largest wall displacement
and has the least stress. Therefore, this part is the cru-
cial portion in the whole model. In addition, secondary
flows could be an important indicator in the deforming
walls of the curved aortic arch. The outcome of the
study is in accordance with the motivation to study the
wall deformation characteristics of porous blood ves-
sels and suggests that the porous structure must be
considered for any analysis involving the deformable
wall structure. This study would be helpful in predict-
ing the mass transport properties with actual physical
situation in the aorta.
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Figure 7: Comparison of porous and non-porous artery wall displacements (in micrometers): (a) Ascending and descending
aorta (b) peak systole, (c) peak pressure, and (d) peak diastole in aortic arch.
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