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1 INTRODUCTION

The material behavior of soft matter can often be
described by material models belonging to the class of
yield stress fluids. So, how can yield stress fluids be dis-
tinguished from classical materials – solids and liquids
– in case of phenomenological modeling? This directly
leads to the question of convenient classification crite-
ria to separate solids, liquids and yield stress fluids from
each other. The search for a definition of the terms sol-
id and liquid has a long history [1]. For example Bing-
ham [2] said “If a body is continuously deformed by a
very small shearing stress, it is a liquid, whereas if the
deformation stops increasing after a time, the sub-
stance is a solid”. Noll defined solids and liquids relat-
ing to its symmetry properties [3 – 8]). But Greve [7]
pointed out that there are materials which are neither
solids nor fluids in the sense of Noll’s definitions. There
also exists a classification into solid and liquid-like
behavior depending on the storage and loss modulus.
Solid-like behavior occurs if G’ > G’’, otherwise liquid-
like behavior [9 – 14]. A disadvantage of this definition
becomes obvious for example in case of the Maxwell
element with the elastic moduls G and the viscosity h,
which has to be classified either as solid or liquid

depending on the angular frequency w. For w < G/h the
loss modulus is greater than the storage modulus so
that the Maxell element has to be treated as fluid. On
the other hand it has to be classified as liquid for w >
G/h since the storage modulus dominates over the loss
modulus. Thus, the search of phenomenological defin-
itions of ‘solid’ and ‘liquid’, which can be applied theo-
retically as well as practically, is still necessary in gen-
eral and especially to define the class of yield stress
fluids. Furthermore, this contribution investigates the
way of defining the term ‘viscosity’ since the behavior
of yield stress fluids is dramatically different to the one
of Newtonian fluids due to yielding.

Classifying materials as well as defining ‘viscosity’
is essential also in practice e.g. for material modeling.
To determine the class of a material behavior should be
the first step before applying constitutive equations.
Determining the differential viscosity enables to ex -
tract the pure viscous properties of a yield stress fluidic
material specimen which is necessary to model it. That
is why, this article places a great emphasise on basics
of yield stress fluids in the sense of phenomenological
modeling, material classification as well as the differ-
ential viscosity and is useful in terms of practical ques-
tions. It
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Information A and included the description in terms of
the classical theory of plasticity. As consequence, the
terms ‘preyield’ and ‘postyield’ were defined for the
friction element by the loading and unloading condi-
tions which in turn are connected with the Karush-
Kuhn-Tucker and consistency conditions. In this work
the latter two were illustrated in a convenient way by
the evaluation of logical expressions in Supplemental
Informationg A.1 and A.2 without considering the opti-
misation problem with constraints in form of inequal-
ities.
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