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ABSTRACT:

This article reports viscosity data on a series of colloidal dispersions collected as part of the International Nanoflu-
id Property Benchmark Exercise (INPBE). Data are reported for seven different fluids that include dispersions of
metal-oxide nanoparticles in water, and in synthetic oil. These fluids, which are also referred to as ‘nanofluids,’
are currently being researched for their potential to function as heat transfer fluids. In a recently published paper
from the INPBE study, thermal conductivity data from more than 30 laboratories around the world were report-
ed and analyzed. Here, we examine the influence of particle shape and concentration on the viscosity of these
same nanofluids and compare data to predictions from classical theories on suspension rheology.
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[17] = 23.4 for the spherical particles and [7] = 70.8
for the rod-shaped particles. The shear thinning
behavior observed in alumina nanorod suspen-
sions can also be due to shear induced reorgani-
zation of nanorods under confined geometry
where the packing can become more efficient. A
similar result has been reported in recently pub-
lished datafornanofluids with spherical particles
[8-13], although somewhat lower values of [] =
4-16 were found. A possible explanation for
these pronounced differences between theory
and experiment is particle agglomeration, which
would increase the effective volume fraction of
the particles [10-14]. Indeed, light scattering
results on these fluids reported elsewhere [16]
are consistent with the occurrence of particle
agglomeration.

For comparison, we show the relative ther-
mal conductivity versus particle concentration
data from the INPBE study [16] in Figures 7 and 8.
As with the viscosity data, nanofluids with both
spherical and rod-shaped particles show a linear
dependence of k/k; on ¢. The data for the fluids
with spherical particles in Figure 7 show a slightly
stronger dependence on particle concentration
than predicted: measured [k] = 4.0, and predicted
[k] =3.This observation is consistent with the pres-
ence of particle agglomeration in these systems,
and suggests that particle clustering has a larger
effect on viscosity than thermal conductivity in
nanofluids with spherical particles. The situation
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is different for the nanofluids with rod-shaped
particles as shown in Figure 8. Here, the observed
dependence on particle concentration is weaker
than predicted: measured [k] = 5.6, and predicted
[k] = 13.1. Apparently, particle agglomeration can
significantly reduce the effective thermal conduc-
tivity of nanofluids with rod-shaped particles. A
second explanation for the reduction in effective
thermal conductivity in these nanofluids is inter-
facial thermal resistance [16].

4 CONCLUSIONS

Viscosity data have been collected as part of an
International Nanofluid Property Benchmark
Exercise (INPBE). These data are from approxi-
mately 10 different laboratories around the
world on a series of 10 different nanofluids and
their base fluids. In general, the agreement
between different laboratories was good with
variations of approximately + 20%, which, in
part, could be explained by lab-to-lab tempera-
ture variations. Two of seven nanofluids showed
shear-thinning behavior; the remaining five
showed Newtonian behavior. For nanofluids
with both spherical and rod-shaped nanoparti-
cles, the dependence of viscosity (relative to the
base fluid viscosity) on particle concentration
(volumefraction) was significantly strongerthan
predicted by dilute suspension theory. This dis-
crepancy was attributed to particle agglomera-
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Figure 5 (left above):
Relative viscosity '7/77f versus
particle concentration ¢ for
nanofluids with spherical
particles: filled circles for
ALO, particles in oil (5153
and 5154) and open triangle
forMn, Zn, Fe,O. in water
(5451). Lines indicate n/n=1
+ [n]¢ with prediction [n] =
5/2 (dashed) and fit [] =
23.4 (solid).

Figure 6 (right above):
Relative viscosity n/nf versus
particle concentration ¢ for
nanofluids with rod-shaped
particles: filled circles for
A0, particles in oil (5155
and $156) and open circle for
AlLO, in water (5151). Lines
indicate n/n.= 1+ [n]¢ with
prediction [n] = 8 (dashed)
and fit [n] = 70.8 (solid).

Figure 7 (left below):
Relative thermal conductivi-
ty k/k. versus particle con-
centration ¢ for nanofluids
with spherical particles:
filled circles for ALO, parti-
cles in oil (5153 and $154) and
open triangle for

Mn, Zn, Fe,0, in water
(5451). Data taken from
INPBE study [16]. Lines indi-
cate k/k. = 1+ [k]¢ with pre-
diction [k] = 3 (dashed) and
fit [k] = 4.0 (solid).

Figure 8 (right below):
Relative thermal conductivi-
ty k/k versus particle con-
centration ¢ for nanofluids
with rod-shaped particles:
filled circles for ALO, parti-
cles in oil (S155 and S156)
and open circle for ALO, in
water (5151). Data taken
from INPBE study [16]. Lines
indicate k/kf = 1+ [k]p with
prediction [k] = 13.1 (dashed)
and fit [k] = 5.6 (solid).
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Map:

Map showing locations of
laboratories participating in
the International Nanofluid
Properties Benchmark Exer-
cise (INPBE).
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tion. In contrast, the observed enhancement in
thermal conductivity was slightly larger for the
spherical particle fluids, and significantly lower
forthe rod-shaped particle fluids, than predicted
by effective medium theory. As noted in the
introduction, criteria for the overall effectiveness
of nanofluids as heat transfer fluids have been
proposed [9, 12], which suggest [17] should be 4 -
5 times smaller than [k]. Clearly, the nanofluids
considered in this study would fail; this suggests
that the overall effect of adding nanoparticles to
the base fluid is negative in terms of heat trans-
fer performance.
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