INTRODUCTION TO TECHNICAL FIBRE SUSPENSIONS

With rheology progress was made in understanding of structure of gels and colloidal suspensions, particularly with regard to polysaccharides and large glyconjugates. Whereas the rheology of concentrated dispersions is the considerable interest to the colloidal scientist, pharmacist or food technologist [1], of more interest to molecular biophysicist is dilute solution viscometry and the structural parameter the intrinsic viscosity [2]. The intrinsic viscosity is a viscosity measure extrapolated to infinite dilution that depends on the properties of isolated macromolecules in solution (effects of interaction have been eliminated by extrapolation). So, intrinsic viscosity provides information about molecular weight, radius of gyration, shape, specific volume, conformation, hydration, flexibility of the macromolecules. Several empirical equations relating viscosity to concentration [2 - 4] have been proposed in order to determine intrinsic viscosity [5]. The three most commonly used equations, concerning dilute solutions, are the following:

Rolando Antonio Curvale* and Juan Carlos Cesco1

Cátedra de Fisicoquímica and Proyecto 2-9304. Fac. de Qca., Bca. y Farmacia, Universidad Nacional de San Luis, San Luis, Argentina

1 Instituto de Matemática Aplicada San Luis (CONICET–UNSL), Universidad Nacional de San Luis, San Luis, Argentina

* Email: rcurvala@unsl.edu.ar
Fax: x54.2652.422803

Received: 24.6.2008, Final version: 16.3.2009

ABSTRACT:
“Single-point” equations used for intrinsic viscosity determination are greatly used when working with synthetic polymer solution systems. In this work we have applied them to a biological macromolecule in a bovine serum albumin (BSA)/water system. Almost all single-point equations are available and errors can be lowered. However, we have detected a systematic bias in the estimations provided by “single-point” methods. To overcome it we propose a “double-point” method which gives lower estimation errors for this system. This novel method is not system specific and could be applied to other polymeric solution.

ZUSAMMENFASSUNG:

RÉSUMÉ:
Les équations de simple point pour la détermination de la viscosité intrinsèque sont très employées en systèmes de solutions de polymères synthétiques. Dans ce travail-ci nous les avons appliquées au système: eau-BSA (macromolécule biologique), et, nous y avons détecté un erreur systématique dans les estimations données par cette méthode. Dans ce travail, on montre graphiquement l’erreur que on peut obtenir. Pour résoudre cette difficulté on présente ici une équation pour l’estimation an utilisant une méthode de double point, d’application générale et qui diminue l’erreur commise. Cette nouvelle méthode n’est pas spécifique à ce système et elle peut être appliquée à les autres polymères en solution.

KEY WORDS: intrinsic viscosity, “single-point”, “double-point”, BSA

1 INTRODUCTION TO TECHNICAL FIBRE SUSPENSIONS

With rheology progress was made in understanding of structure of gels and colloidal suspensions, particularly with regard to polysaccharides and large glyconjugates. Whereas the rheology of concentrated dispersions is the considerable interest to the colloidal scientist, pharmacist or food technologist [1], of more interest to molecular biophysicist is dilute solution viscometry and the structural parameter the intrinsic viscosity [2]. The intrinsic viscosity is a viscosity measure extrapolated to infinite dilution that depends on the properties of isolated macromolecules in solution (effects of interaction have been eliminated by extrapolation). So, intrinsic viscosity provides information about molecular weight, radius of gyration, shape, specific volume, conformation, hydration, flexibility of the macromolecules. Several empirical equations relating viscosity to concentration [2 - 4] have been proposed in order to determine intrinsic viscosity [5]. The three most commonly used equations, concerning dilute solutions, are the following:
viscosity in the system BSA-water when concentration is unusual [17, 21].

From the graphics we can see that the “double-point” method has a very consistent behavior when compared with the “Multiple Linear Least-Squares Fits with a Common Intercept method”, although it is even better in the case of the system dealt with in Figure 3. In the last column of Tables 2 to 6 we have included the percentage relative errors of the estimations obtained by our ‘two point’ method given in Equation 12 and where the observations made in the previous paragraph have been taken into account.

4 CONCLUSION

Although the suitability of ‘single-point’ equations has been objected, some automated viscosimeters have already incorporated them into their software. Also, there is a continued interest in verifying their applicability to different systems [15]. However, we have not found any reference towards biological macromolecule solutions. In this work we have studied the BSA-water system and pH variation. BSA is a non-linear, ramified, highly cross-linked molecule with strong internal and water interactions, in which it is soluble. BSA is globular, heart shaped at neutral pH [20] and has more extended conformations as pH changes. The intrinsic viscosity of BSA solutions changes at different pH because BSA size and shape are modified. Regarding diluted BSA solutions, viscosity dependence on concentration is unusual [17, 21].

The highest errors are observed in the run at pH 8.06, with data presenting a linear regression (R²) of 0.983, but with a negative and very high Kₐ. Also, the sum of the Kₐ and Kₜ constants is more deviated from the 0.5 value. At the remaining runs, Kₐ + Kₜ deviates approximately 25 % and error decreases 50 %. All runs have values of n < 0.1 [10] but the obtained values were acceptable. All equations show dependence on concentration and enhance their outcome at concentrations lower than 1 %, except for Equation 10 that shows a non-systematic behavior. Kₐ = 0.28 was used in Equation 11 [15], although a very different value is observed in Table 1. In general, it can be stated that these equations (except Equation 10) can be used for approximate determinations of intrinsic viscosity in the system BSA-water when concentrations are inferior to 0.75 %. For higher concentrations, all “single-point” estimators provide poor estimations, and a graphical explanation for this behavior is provided. Therefore, we propose a “double-point” method to estimate [η] which have given errors smaller then 3 % in all the system studied in this paper, except for the case pH = 8.6 where an error of 11 % is observed, although it may be due to two experimental points which seem to be no coherent [17]. Our method not require a graphical adjustment and is more economic than that presented in [19], which simultaneously adjust series of Huggins and Kraemer’s values with two lines with a common intercept at C = 0, providing good estimates for [η], but requiring of at least four determinations.

Methods based upon “single point” equations are strongly dependent on the system under consideration, its concentration and the verification of the condition Kₐ + Kₜ = 0.5. On the other hand, regarding the BSA-water system (which presents different rheological behaviors), the “double-point” method of estimation performs better, exhibits less dependence on the concentration and does not require of previous knowledge about the values of Kₐ and Kₜ.

ACKNOWLEDGMENTS

The authors would like to thank Fedesa-UNSL, who kindly granted us the lyophilized bovine albumin for this work, and to an anonymous referee whose suggestions helped to improve the presentation, although the authors assume the whole responsibility for the content of the paper. J. Cesco would also thank CONICET and UNSL (Argentina) for their financial support.
REFERENCES