
1 INTRODUCTION

In recent years, strain controlled large amplitude oscil-
latory shear (LAOS) has been developed into a power-
ful tool to investigate non-linear material behavior.
Therefore, a sinusoidal strain is imposed and the stress
response is measured. The latter can be decomposed by
a harmonic analysis, the Fourier Transform (FT) rheolo-
gy [1 – 11], into the storage modulus G’�, the loss modu-
lus G�’’ as well as the higher harmonics ak and bk. These
are material functions which tell about the material
behavior and help drawing conclusions about model
assumptions. Based on these, one can create a materi-
al model and is able to do further simulations. The stor-
age and loss modulus can be also used for material clas-
sification. For example Hyun et al. [10] presented a clas-
sification depending on the LAOS behavior of G’�(ĝ) and
G’�’(ĝ) which consists of four types. Another way to pre-
sent the characteristic of materials is the visualisation
of their stress responses. Here it has become estab-
lished to plot the Lissajous curves as well as the Pipkin

diagrams, the so called rheological fingerprint [12 – 14].
Furthermore, sinusoidal loading is an useful tool to
investigate the rate-dependency g

·
∼ ĝwwithin a limit-

ed range of strain -ĝ ≤ g ≤ ĝ by varying the angular fre-
quency w [3, 10, 11, 15]. Thus, the critical straingcr, which
describes the limit of linearity to separate the range of
small amplitude oscillatory shear (SAOS) from LAOS,
can be determined within a high sensitivity investiga-
tion [8, 16]. After passing the limit of linearity the Fouri-
er analysed stress response contains higher harmonics.
Often the lack of physical interpretation of these high-
er harmonics is emphasised [17 – 20]. For improvement,
new approaches have been suggested like (1) the Fouri-
er Chebyshev analysis of Ewoldt [19] applying the stress
decomposition of Cho [18], (2) the method of Klein [21]
using sine, square, triangular and sawtooth waveforms
as four fundamental basis functions, and (3) the se -
quence of physical processes technique of Rogers [15].
Further details as well as the state of the art are sum-
marised elsewhere [11, 20, 22 – 24] making such a dis-
cussion redundant at this place.
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but with the increasing of the loss modulus and the decreasing of the storage modulus. Thanks to the analytical calculations,
it is also obvious that the stress response of yield stress fluids does not necessarily include even harmonics. In this work the
steady state stress response of the Prandtl element is also presented as Lissajous plots and Pipkin diagrams to visualise the
rheological fingerprint.

Key words:
large amplitude oscillatory shear, Fourier Transform rheology, harmonic analysis, storage modulus, loss modulus, yield strain,
Prandtl element, Lissajous plot, Pipkin diagram

| DOI: 10.3933/APPLRHEOL-24-35478 | WWW.APPLIEDRHEOLOGY.ORG



However, data information obtained by FT rheol-
ogy are very useful for material modelling which is
shown examplarily for the Prandtl element in this
work. Its key properties are the decreasing storage
modulus and a loss modulus with considerable maxi-
mum ac cording to Figure 1, which are typical for many
materials like xanthan gum [9 – 11, 25], bioinspired
slime [12], water based dispersions and emulsions [21],
gastric mucin [26], magnetorheological fluids [27, 28],
carbopol gel [29], colloidal glasses [30] as well as sus-
pensions of soft colloids [17, 31]. In the sense of the clas-
sification of Hyun et al. [10] these features are denot-
ed as type III behavior. Thus, this article is a theoretical
work concer ning generalities of large amplitude oscil-
latory shear and its application to the Prandtl element
to be able to predict the LAOS behavior of more com-
plex material models which partially can consist of a
Prandtl element. Thereby, some theoretical findings
are ob served which result a priori from the constitu-
tive equations. They show the need to be careful about
conclusions that are drawn a posteriori about materi-
al systems by experimental analysis methods. This
indeed is the quintessence of the discussion about the
yield stress concept [32 – 34]: If a yield stress model is
as sumed to reproduce measurements, its yield point is
given a priori so that one can postulate a posteriori the
measurement point of yielding. The Prandtl element
belongs to the class of yield stress fluids, as defined by
Boisly [35]. According to the non-linear property of yield
stress fluids, the range of small amplitude oscillatory
shear is left. Hence, the use of large amplitude oscilla-
tory shear is necessary. In Section 2 the storage and loss
modulus as well as higher harmonics are defined by
Equations 5 and 6, whereat even higher harmonics van-
ish if Equation 9 is fulfilled. This theory is applied to the
Prandtl element in Section 3. First of all, its constitutive
equations are briefly summarised in Section 3.1. Then,
the storage and loss modulus and the higher harmon-
ics as well as the Lissajous plots and the Pipkin dia-
grams are calculated in Section 3.2. The Lissajous curves
as well as the storage and loss modulus show similar-
ly a sharp transition from the preyield regime to the
postyield because the constitutive equations of the

Prandtl element contain a yield function and a yield
condition. The sharp transition is expressed by the sud-
den increase of G�’’(ĝ) and the decrease of G’�(ĝ) of the
Prandtl element after passing the critical strain accord-
ing to Equation 24. In case of Lissajous curves, the sharp
transition is given by sharp corners. Thus, independent
from the fact that the storage and loss modulus are
quantities which integrate the signal over the period
according to Equations 5 and 6, they are able to detect
the sharp transition if an amplitude sweep is consid-
ered.

A great benefit of this work arises from the fact
that the calculations could be done analytically so that
the LAOS response and the material functions are giv-
en explicitly in terms of mathematical functions. This
is very useful in many steps of phenomenological
material modelling. Generally, it is enough to calcu-
late the LAOS behavior of a material model, either ana-
lytically or numerically, if its material parameters are
fixed. This work also supports the circumstance where
the material parameters are not given but still have to
be determined. Here, the knowledge of analytically
expressed material functions is productive which was
also emphasised by Giacomin et al. [23]. They make
the identification of material parameters as easy as
possible [36]. With the help of analytically given mate-
rial functions, characteristic points can be identified.
Due to this, the influence of the material parameters
on characteristic points of the storage and loss mod-
ulus as well as higher harmonics is given. Thus, a phys-
ically motivated pa ra  meter identification can be ap -
plied based on characteristic points. In principle, there
is only one point that is relevant for the Prandtl ele-
ment to identify its material parameters. However, to
give the best possible ana lysis all characteristic points
of the Prandtl element are presented. In particular,
this is useful if the LAOS behavior of more complex
material models which partially can consist of a
Prandtl element has to be ana lysed. According to a
curve sketching of these analytical functions, it is
shown for the Prandtl element that the cross over
between the storage and loss modulus does not coin-
cide with the critical or yield strain as often as sum ed
[17, 30, 31, 37 – 40]. Furthermore, it can be un der stood
that the stress responses of yield stress fluids do not
include even harmonics imperatively as it is some -
times considered [1, 21, 41 – 43]. Beside this, analytical
material responses can also be used to check numer-
ically implemented material models by the agree -
 ment between the prediction of the numerical imple-
mentation and the analytically given response. Thus,
the aims of this work are
� the general definition of the storage and loss mod-

ulus and higher harmonics in case of LAOS,
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Figure 1: Qualitative plot of a decreasing storage modulus
and a loss modulus with considerable maximum denoted
as type III behaviour by Hyun et al. [10].



� the presentation of a condition which has to be met
in order to avoid even harmonics,

� to propose a rheological element, the Prandtl ele-
ment, which is able to model the decreasing storage
modulus and a loss modulus with considerable max-
imum of type III behavior of Hyun et al. [10],

� the fully analytical investigation of the Prandtl ele-
ment with respect to strain controlled sinusoidal
loading in the LAOS regime,

� the analytical description of the storage modulus,
the loss modulus, higher harmonics, the Lissajous
plots in Mode 1 and 2 as well as the Pipkin diagrams
of the Prandtl element for LAOS which for example
enable a verification of numerically implemented
material models which include the Prandtl element,

� the identification of characteristic points of these
material functions to improve the process of mate-
rial modelling and to introduce a physically moti-
vated material parameter identification.

2 STEADY STATE STRESS RESPONSE TO
STRAIN CONTROLLED SINUSOIDAL LOADING

In this section strain controlled sinusoidal loading

(1)

and its general stress response are examined without
refering to specific material models. The transient
stress response of a rheological element according to
this strain load is given by t(t). In the following, it is
assumed that it reaches the steady state stress

(2)

The operator STEADYSTATE{ } introduces t0 as parame-
ter which defines the time henceforward the transient
stress response is in steady state. Thus, it is a periodic
function with the period of the strain load T = 2p/w and
satisfies t¥(t) = t¥(t + T). Depending on ĝ , two regions
are distinguished, the small and large amplitude oscil-
latory shear.

2.1 SMALL AMPLITUDE OSCILLATORY SHEAR (SAOS)

In some cases the strain amplitudes are smaller than a
critical strain gcr. In the range 0 ≤ ĝ ≤ gcr the material
behavior is characterised by a linear operator. The lin-
ear regime is observed for small amplitude oscillatory
shear [11, 24, 44, 45]. Here, the steady state stress t¥(t)

of the transient stress response t(t) related to strain
controlled sinusoidal loading according to Equation 1 is
given by

(3)

The storage modulus G’�and the loss modulus G’’ must
not be functions of the strain amplitude [9, 11, 44] to ful-
fil the conditions of linearity.

2.2 LARGE AMPLITUDE OSCILLATORY SHEAR (LAOS)

For higher strain amplitudes with ĝ > gcr , the large am -
pli tude oscillatory shear [3, 11, 13, 24, 44, 46] is present
so that the material behavior cannot be expressed by a
linear operator. In this sense LAOS has to be seen as ab -
breviation for LAOStrain to differ it from LAOStress [13,
25, 47, 48]. Its steady state stress response generally can
be expressed as a Fourier series [13, 28, 45, 49]

(4)

including odd as well as even harmonics in general [13,
50, 51]. The Fourier coefficients

(5)

(6)

are generally functions of the angular frequency as well
as the strain amplitude and are valid also for nonlinear
material behavior. The storage and loss modulus result
from

(7)

(8)

Since the steady state does not appear instantaneous
for any material after the load is applied, the storage
and loss modulus as well as the higher harmonics
depend on the time of observation. That is why the
parameter t0 defines the begin of integration so that
the interval t0 ≤ t ≤ t0 + T represents the steady state
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stress response. If one furthermore restrict the steady
state stress response to be a function with

(9)

so that the first half of a period equals the negative of
the second half of a period, the even harmonics vanish.
Hence, the steady state stress is given only by the odd
harmonics

(10)

with k = 2n − 1 for n ∈ N+. Since Equation 9 also can be
true for yield stress fluids, their stress responses does
not include even harmonics imperatively as it is some-
times considered [1, 21, 41 – 43]. This can be seen for
example in case of the Prandtl element in Section 3.2.
To decide how many higher harmonics have to be tak-
en into account to simulate a non-linear behavior with
a required accuracy, first of all the intensities

(11)

are determined. It is derived if Equation 4 is trans-
formed into the amplitude-phase description

(12)

with

(13)

With the help of the higher harmonic contribution [7,
9] given by the normalised intensities Ik/I1, the para-
meter m of Equation 12 can be determined.

3 ANALYTICAL CALCULATIONS OF THE LARGE
AMPLITUDE OSCILLATORY SHEAR RESPONSE
OF THE PRANDTL ELEMENT

3.1 ONE-DIMENSIONAL CONSTITUTIVE EQUATIONS OF
THE PRANDTL ELEMENT

The Prandtl element represents a yield stress fluid, as
defined by Boisly [35], because it has a non-zero equilib-
rium relation according to relaxation and a well defined
flow function. Since it is a rate-independent material
model, it considers solely plastic flow. Hence, viscous
properties may not exist from the flow function which
can be exclusively satisfied if the viscosity is defined as
differential viscosity. This is shown in detail in Boisly [35].
The Prandtl element has an elastic range and plastic
properties without hardening effects as illustrated in Fig-
ure 2. The parameter G is the elastic modulus of the
Hookeian spring and ty is the yield stress of the friction
element [35]. With respect to the kinematic and kinetic
conditions of a series connection, it follows

(14a)

(14b)

(14c)

with

(15)

The definition ~sign(0) = x is chosen in contrast to the
ordinary definition sign(0) = 0 of Equation 20 to take -
ty < tp < ty into account if g· f.p = 0. In this sense the vari-
able x is determined by the equilibrium so that also the
material behavior in case of vanishing plastic flow can
be expressed. Thus, x lies in the interval -1 < x < 1. The
loading and unloading behavior is given in the most
convenient formulation analog to the friction element
by the yield function F(tp) = |tp| - ty, the Karush-Kuhn-
Tucker conditions and the consistency condition [35].
Since the strain of the Prandtl element is a sum of gs.p
and gf.p, each one cannot be determined directly for a
given strain history g(t). This implicates the choice of an
internal variable of a strain type. Here, the strain of the
friction element is chosen. Its evolution results from the
associated flow rule
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Figure 2: Rheological symbol of a Prandtl element.



(16)

To define the proportionality factor z, F· = 0 is evaluat-
ed. One obtains the evolution equation

(17)

With the help of Equations 14b and 17 the general con-
dition

(18)

is found. The proportionality factor yields

(19)

according to Equations 16, 17, 18, and ¶F / ¶tp = sign(tp)
with the ordinary signum function

(20)

Thus, the evolution equation of the internal variable
gf.p. Equation 16 also can be expressed by

(21)

but cannot be determined without knowing the ab -
solute value of the strain rate at which tp = ty or
tp = - ty is applied. The preyield and postyield are de -
fined analog to the friction element as it is done in Bois-
ly [35].

3.2 LARGE AMPLITUDE OSCILLATORY SHEAR OF THE
PRANDTL ELEMENT

In the following, the material behavior of a Prandtl ele-
ment is investigated related to a sinusoidal strain load-
ing g =ĝ sin(wt) under the initial conditions

(22)

(23)

The latter restriction, Equation 23, is necessary because
in general every non-zero strain of the friction element
[35] can satisfy Equation 22 which would shift Equation
24. The Prandtl element acts in the preyield and fulfils
the condition of SAOS if it is harmonically loaded by
strain amplitudes less or equal than the critical strain

(24)

In this case, it behaves linear like a Hookeian spring.
Hence the storage modulus equals G and the loss mod-
ulus is zero. In the following, the LAOS behavior of the
Prandtl element is investigated for ĝ > gcr. Since the
stress response is not instantaneously in steady state,
tp.¥ ≠ tp|g = ĝsin(wt), it is calculated as long as the first peri-
od being representative for steady state. If the values
of the internal variable gf.p at the beginning and the end
of a period are the same, the period represents steady
state. The LAOS stress response is given by

(25)

and plotted in Figure 3a. The evolution of the internal
variable is calculated by gf.p = g - tp/G and is plotted in
Figure 3b. The values of the parameters which are used
in Equation 25 are defined in Table 1 with respect to the
domain of definition of the arc sine function. Since the
values of the internal variable at the times t2 and t6 are
the same gf.p|t2 = gf.p|t6, the first period which represents
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Table 1: ti , g|ti , and gf.p|ti for sinusoidal strain loading
g =ĝsin(wt) with i = 0 ... 6.



steady state lies in between t2 ≤ t ≤ t6. Depending on t3,
the postyield of the PRANDTL element can be classified
into two modes which can be seen in Figures 3, 7, and
8. In case of Mode 1 the postyield is present for more
than the half of a period being representative for steady
state. Thus, Mode 1 occurs for p/(2w) < t3 ≤ p/w which
equals

(26)

relating to the analytical expression for t3. The conce-
quences are a large hysteresis of the first Lissajous plot
(Figure 7a) and overlapping parts of the second Lis-
sajous plot (Figure 7b). In Mode 2 the postyield appears
less than the half of a steady state period so that the
hysteresis of the first Lissajous plot is smaller than the
one of Mode 1. Furthermore, no overlapping occurs in
the second Lissajous plot. Mode 2 is given by p/w < t3 <
3p/(2w) which is identical to 1/2 < ty/(Gĝ) < 1. Its upper
limit

(27)

ensures being in the postyield. Its lower limit

(28)

stands for the transition from Mode 2 to Mode 1. As it
can be seen in Figures 3a and 3b, the transition occurs
for t3 = p/w which is accompanied with ty/(Gĝ) = 1/2. This
is found according to the analytical expression t3 = [ p
- arcsin (1 - 2ty/Gĝ)] 1/w of Table 1. Finally, Equations 26,
27, and 28 can be transformed into

(29)

(30)

To determine the storage and loss modulus, Equations
5 to 8 have to be considered because the Prandtl ele-
ment is a non-linear model. Therefore, t0 = t2 because
t2 defines the beginning of the first period of steady
state. Thus, the storage modulus in case of ĝ > gcr is giv-
en by G’�p(w,ĝ) = 2/(ĝT)òt2

t2+Ttp(t)sin(wt)dt. Considering
tp(t2 + Dt) = -tp(t2 + T/2 + Dt), which is also valid for the
sine and cosine function, as well as t2 + T/2 = t4, the stor-
age modulus in case of ĝ > gcr is calculated by G’�p(w,ĝ) =
4/(ĝT)òt2

t4tp(t)sin(wt)dt. Thus, the storage modulus of
the Prandtl element can be summarised into

(31)

(32)

The plausibility of Equation 32 is proved by the condi-
tion of continuity

(33)

between the cases ĝ ≤ gcr and ĝ > gcr which denotes a
characteristic point. Beside this, it yields

(34)

Furthermore, it applies

(35)
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Figure 3: (a) Stress response and (b) response of the internal
variable gf.p related to sinusoidal loading with w = 2p 1/s and
ĝ = 1.5 (Mode 1 —— for G/ty = 4, Mode 2 · · · · · · for G/ty = 0.8).

(a)

(b)



The derivation of the loss modulus is analog to the dis-
cussion of the storage modulus. It is given by G’’�p(w,ĝ) =
4/(ĝT)òt2

t4tp(t)cos(wt)dt and yields

(36)

(37)

With the help of the condition of continuity

(38)

between the cases ĝ ≤ gcr and ĝ > gcr, the plausibility of
Equation 37 is proven. The maximum of the loss mod-
ulus is given by

(39)

and marks another characteristic point of the Prandtl
element. Furthermore,

(40)

The plot of G’�p(ĝ) and G’’�p(ĝ) is given in Figure 4. It is often
assumed,that the crossover G’�(ĝ) = G�’’(ĝ) matches with
the critical or yield strain [17, 30, 31, 37 – 40]. However,
this does not hold for the Prandtl element. Here, the
critical strain coincides with the increase of the loss
modulus and the decrease of the storage modulus.
Since the storage and loss modulus are independent of
the angular frequency, the plots G’�p(w) and G’’�p(w) are
constants and not shown here. The calculation of the
odd coefficients apk,odd with k ≥ 3 is analog to that of the
storage modulus ap.k(w,ĝ) = 4/(ĝT)òt2

t4tp(t)sin(kwt)dt
and can be summarised into

(41)

(42)

Also the plausibility of Equation 42 can be proved by the
condition of continuity

(43)

In the limit case the odd higher harmonics tend to zero

(44)

A further characteristic point is given by the root

(45)
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Figure 4: Qualitative plot of the storage and loss modulus
depending on the strain amplitude of the Prandtl element for
gcr = ty/G, G = 5 · 104 Pa, and ty = 50 Pa.

Figure 5: Plots of higher harmonics of the Prandtl element
depending on the strain amplitude: (a) ap.k,odd(ĝ) and (b)
bp.k,odd(ĝ) for G = 5 · 104 Pa and ty = 50 Pa with k = 3 —–,
k = 5 · · · · · ·, and k = 7 - - -.

(a)

(b)



The dependency on the strain amplitude of ap.k,odd with
k = 3, 5, 7 is plotted in Figure 5a. The odd coefficients
bp.k,odd with k ≥ 3 are given by

(46)

(47)

Analog to ap.k,odd the check of plausibility can be done by

(48)

and in the limit case it yields

(49)

Each maximum of an odd term with k ≥ 3

(50)

defines the last characteristic point. In summary, three
characteristic points were identified by the storage and
loss modulus so that the elastic modulus G and the yield
stress ty can be determined for example from the criti-
cal strain (Equation 24), the preyield-plateau of the stor-
age modulus (Equation 33) or the maximum of the loss
modulus (Equation 39). Characteristic points were also
found in higher harmonics. Thus the root of ap.k,odd
(Equation 45) and each maximum MAX{bp.k,odd} (Equa-
tion 50) can be used in addition to calculate G and ty. In

principle, not all of these points are relevant for the
Prandtl element to identify its material parameters.
However, to determine material parameters of soft
matter whose LAOS behavior can partially modelled by
a Prandtl element the knowledge of more characteris-
tic points is useful. The graphs of the dependence of
bp.k,odd on the strain amplitude is given in Figure 5b for
k = 3, 5, 7. Since the SAOS, ĝ ≤ gcr, is accompanied with
linear material behavior, both ap.k as well as bp.k with k
≥ 3 equal zero. Furthermore, also the higher Fourier coef-
ficients and normalised odd intensities are independent
on the angular frequency, the graphs of ap.k(w), bp.k(w),
and Ip.k(w)/Ip.1(w) are constants and not plotted here. The
normalised odd intensities Ip.k(ĝ)/Ip.1(ĝ) are given in Fig-
ure 6 for k = 3, 5, 7, 9, 11. It can be seen that the normalised
odd intensities, and thus also higher harmonics, become
more dominant by increasing the strain amplitude. For
the special choice of material parameters, G = 5·104 Pa
and ty = 50 Pa, they tend until ĝ = 10-1 to the corre-
sponding values of the friction element Ip.k/Ip.1 ≈ If.k/If.1
= 1/k. Beside higher harmonics as well as the storage and
loss modulus, the ordinary or normalised Lissajous plots
[24, 25, 45, 52, 53] are common graphs to visualise the
rheological fingerprint [12 – 14] of materials related to
sinusoidal loading. The normalised Lissajous plots rep-
resent the normalised steady state stress t¥(t)/MAX
{t¥(t)} versus the normalised strain g(t)/MAX{g(t)} and
the normalised steady state stress versus the nor-
malised strain rate g· (t)/MAX{g· (t)} [54]. Here MAX{( )} is
an operator which determines the maximum of ( ). The
normalised Lissajous plots of Mode 1 and 2 are shown in
Figure 7. In the first and second Lissajous plot (Figure 7a
and 7b), a hysteresis occurs due to the plastic properties
independent from the mode at which the Prandtl ele-
ment works. Since in Mode 1 the ratio G/(tyĝ) is smaller
than in Mode 2, the hysteresis of the first Lissajous plot
in Mode 1 is larger than in Mode 2. Since the normalised
Lissajous plots of Mode 1 and 2 differ significantly from
each other, it becomes clear that a rheological element
does not have to have only one characteristic first and
second Lissajous plot. Thus, all of the rheological prop-
erties get obvious only by the overview of first and sec-
ond Lissajous plots represented by the first and second
Pipkin diagram. The latter are plots about the full spec-
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Figure 6: Plot of the normalised odd intensities of the Prandtl
element depending on the strain amplitude for G = 5 · 104 Pa
and ty = 50 Pa with k = 3 —–, k = 5 · · · · · ·, k = 7 - - -, k = 9 ——,
and k = 11 · · · · ·.

Figure 7: (a) First Lissajous and (b) second Lissajous plot of the
Prandtl element related to sinusoidal loading with w = 2p 1/s and
ĝ = 1.5 (Mode 1 —— for G/ty = 4, Mode 2 · · · · · · for G/ty = 0.8).

(a) (b)



trum of Lissajous plots of a material model [7]. Here the
notion of Ewoldt [13, 19] is chosen which defines a Pip-
kin diagram as ĝ  - w plot. The overview of the first and
second Lissajous plots are shown in the first (Figure 8a)
and second Pipkin diagram (Figure 8b). They can be used
for example to identifiy rate-independent material
behavior. The simplest rate-independent material is the
elastic one. Here the Pipkin diagram of the first Lissajous
plot is an open line. In case of the Prandtl element, this
occur for ĝ ≤ ty /G because it behaves in the preyield like
a Hookeian spring. The other rate-independent class of
material behavior defined by Haupt [55] is plasticity. In
this case the first Lissajous plot does not need to be an
open line. Its shape depends on the strain amplitude but
is independent of the angular frequency. This can be seen
exemplarily for the Prandtl element when ĝ > gcr because
it behaves plastic in the postyield. For ĝ >> 2gcr the
Prandtl element behaves like the friction element [35].

4 SUMMARY AND CONCLUSION

For yield stress fluids, as defined by Boisly [35], typical
steady state LAOS behavior show a decreasing storage
modulus and a loss modulus with considerable maxi-
mum which are key properties of type III behavior of
Hyun et al. [10]. They were modelled by the Prandtl ele-

ment in this work. Large amplitude oscillatory shear is
present if material models begin to behave non-linear.
In this sense ‘large’ means that the strain (or stress)
amplitude are large enough to enforce a material spec-
imen to behave non-linear. In Section 2 generalities of
LAOS were briefly summarised and a condition was pre-
sented by Equation 9, which indicates the absence of
even harmonics. The theory of LAOS was applied in Sec-
tion 3 to the Prandtl element. Its constitutive equations
were given in Section 3.1 so that the transient stress
response could be calculated at the beginning of Sec-
tion 3.2. Subsequently, the storage and loss modulus as
well as the higher harmonics were determined. All of
these calculations were done analytically which enable
the:
� convenient use of the explicitly given mathematical

function,
� determination of characteristic points and its rela-

tion to material parameters,
� physically motivated material parameter identifica-

tion using characteristic points,
� verification of numerically implemented material

models which include the Prandtl element.
In future works also the investigation of the medium
amplitude oscillatory shear (MAOS) [11, 56, 57] is possi-
ble. General practical views can by theoretically com-
pared with the MAOS of the Prandtl element. For the
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Figure 8: (a) First Pipkin diagram tp.¥/ty versus g/ĝ and (b) second Pipkin diagram tp.¥/ty versus g·/(ĝw) of the Prandtl element
with G/ty = 1/gcr = 4.

(a) (b)



Prandtl element three characteristic points were iden-
tified by the storage and loss modulus so that the elas-
tic modulus G and the yield stress ty can be determined
for example from the yield point: the critical strain
(Equation 24) and the preyield-plateau of the storage
modulus (Equation 33). The parameters also can be
identified by the maximum point of the loss modulus
according to Equation 39. Characteristic points were
also found in higher harmonics. Thus the root of ap.k,odd
(Equation 45) and each maximum MAX{bp.k,odd} (Equa-
tion 50) can be used in addition to calculate G and ty. In
principle, there is only one point that is relevant for the
Prandtl element to identify its material parameters.
However, to determine material parameters of soft
matter whose LAOS behavior can partially modelled by
a Prandtl element the knowledge of more characteris-
tic points is useful. Furthermore, it was observed that
the critical strain does not have to coincide with the
crossover G’�(ĝ) = G�’’(ĝ) in any case. In case of the Prandtl
element the beginning of the postyield results a priori
by the constitutive equations. It happens at the critical
strain which occurs at the increasing of the loss modu-
lus and the decreasing of the storage modulus. This
shows the need to be careful about conclusions that are
drawn a posteriori about material systems by experi-
mental analysis methods. Beside this, it was proved
analytically that the LAOS stress response of yield stress
fluids does not include even harmonics imperatively as
it is sometimes considered. Even harmonics vanish in
case of the Prandtl element because its stress response
fulfil Equation 9. Another presentation of the LAOS
behavior of the Prandtl element, its rheological finger-
print, was given by the Lissajous plots and the Pipkin
diagrams. They were shown at the end of Section 3.2.
Depending on ty /(Gĝ), the Prandtl element behave
either in Mode 1 or Mode 2. Since they differ significantly
from each other, it became clear that a rheological ele-
ment does not necessarily generate only one charac-
teristic first and second Lissajous plot. In general, it may
has several typical Lissajous plots. Both modes have in
common that the preyield and postyield parts are sep-
arated by sharp corners similarly to the storage and loss
modulus. Latter also show a sharp transition from the
preyield regime to the postyield at the critical strain
because the constitutive equations of the Prandtl ele-
ment contain a yield function and a yield condition. The
sharp transition is expressed by the sudden increase of
G�’’(ĝ) and the decrease of G’�(ĝ). Thus, independent from
the fact that the storage and loss modulus are quanti-
ties which integrate the signal over the period accord-
ing to Equations 5 and 6, they are able to detect the
yielding if an amplitude sweep is considered.
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